The Euler Equations of Steady Flow in Terms of New Dependent and Independent Variables

Peangpob Monnuanprang

Abstract—In this paper we study the transformation of Euler equations

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} = -\frac{1}{\rho} \nabla P + \tilde{f}, \quad \nabla \cdot \tilde{u} = 0,
\]

where \(\tilde{u}(\tilde{x}, t)\) is the velocity of a fluid, \(P(\tilde{x}, t)\) is the pressure of a fluid and \(\rho(\tilde{x}, t)\) is density. First of all, we rewrite the Euler equations in terms of new unknown functions. Then, we introduce new independent variables and transform it to a new curvilinear coordinate system. We obtain the Euler equations in the new dependent and independent variables. The governing equations into two subsystems, one is hyperbolic and another is elliptic.

Keywords—Euler equations, transformation, hyperbolic, elliptic

I. INTRODUCTION

In this paper we study the transformation of Euler equations

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} = -\frac{1}{\rho} \nabla P + \tilde{f}, \quad \nabla \cdot \tilde{u} = 0,
\]

where \(\tilde{u}(\tilde{x}, t)\) is the velocity of a fluid, \(P(\tilde{x}, t)\) is the pressure of a fluid and \(\rho(\tilde{x}, t)\) is density.

The Euler equations of the two-dimensional steady incompressible ideal fluid are

\[
\begin{align*}
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial P}{\partial x}, \\
\frac{\partial v}{\partial x} + u \frac{\partial v}{\partial y} &= -\frac{\partial P}{\partial y}, \\
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} &= 0,
\end{align*}
\]

where \(u(x, y)\) and \(v(x, y)\) are components of the velocity in the \(x\) and \(y\) direction respectively, \(P(x, y)\) is the pressure of a fluid. Without loss of generality we set the density equal to one. \((\rho = 1)\).

II. MATHEMATICAL FORMULATION

The motion of a homogeneous ideal incompressible fluid is described by the Euler equations \([5]\):

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} = -\frac{1}{\rho} \nabla P + \tilde{f}, \quad \nabla \cdot \tilde{u} = 0,
\]

Peangpob Monnuanprang, Phranakhon Rajabhat University Changwattana Road, Bangkhen, Bangkok, 10220, Thailand. (corresponding author to provide phone: 066-2522-6623; fax: 066-2522-6623; e-mail: peiangpb@math.sut.ac.th)
transformation for two kinds of the boundary value problem in Fig. 2.

Problem 1 boundary conditions:
Impermeable boundaries AD and $BC : (x, y) \in \Gamma^0$
Inflow part $AB : (x, y) \in \Gamma^1$
$q = q_1(x, y)$, $w = w_1(x, y)$.
Outflow part $CD : (x, y) \in \Gamma^2$
$q = q_2(x, y)$.

Problem 2 boundary conditions:
Impermeable boundaries AD and $BC : (x, y) \in \Gamma^0$
$\vec{u} \cdot \vec{n} = 0$.
Inflow part $AB : (x, y) \in \Gamma^1$
$q = q_1(x, y)$, $w = w_1(x, y)$.
Outflow part $CD : (x, y) \in \Gamma^2$
$P = P_2(x, y)$,
$\vec{u} \cdot \vec{n} > 0$.

The problem 2 differs from the problem 1 in the boundary conditions on the outflow part CD. On CD, only pressure and condition for sign of normal component of the velocity vector are given.

ILLUSTRATIONS AND DIAGRAMS

Fig. 2. Sketch of a physical domain.

Then, we eliminate the terms containing the pressure by subtracting these two equations and use the condition

$$\frac{\partial^2 P}{\partial \chi \partial \gamma} = \frac{\partial^2 P}{\partial \gamma \partial \chi}.$$

We have

$$\frac{\partial u}{\partial \chi} + u \frac{\partial \nu}{\partial \chi} + \frac{\partial \nu}{\partial \chi} = \frac{\partial^2 P}{\partial \gamma \partial \chi} + v \frac{\partial \nu}{\partial \gamma}$$

$$-\frac{\partial u}{\partial \gamma} - u \frac{\partial \nu}{\partial \gamma} - \frac{\partial \nu}{\partial \gamma} - v \frac{\partial \nu}{\partial \gamma} = 0.$$

Substitution of $u = w(x, y) \cos q(x, y)$ and $v = w(x, y) \sin q(x, y)$ into continuity (3) yields

$$\frac{\partial \chi}{\partial \chi} - \cos q - \sin q + \sin q = 0.$$

On the other hand, substitution of the expressions $u = w(x, y) \cos q(x, y)$ and $v = w(x, y) \sin q(x, y)$ into (10) gives us the following equation

Differentiating (11) with respect to x and y, we obtain

$$\cos q \frac{\partial^2 \chi}{\partial x^2} - 2 \sin q \frac{\partial \chi}{\partial \chi} \frac{\partial^2 \chi}{\partial \gamma^2} - \cos q \frac{\partial^2 \chi}{\partial \gamma^2} = 0,$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} + \cos \chi \frac{\partial^2 \chi}{\partial \chi^2} - \cos q \frac{\partial^2 \chi}{\partial \chi \partial \gamma} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} = \cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} + \sin q \frac{\partial^2 \chi}{\partial \chi \partial \gamma}.$$

III. EULER EQUATIONS IN TERMS OF NEW UNKNOWN FUNCTION $\omega(x, y)$ AND $q(x, y)$

We eliminate the pressure from the Euler equations by eliminating the mixed derivatives. Taking the derivatives in (1) and (2) with respect to y and x, respectively, we obtain

$$\left(\frac{\partial u}{\partial \gamma} \frac{\partial u}{\partial \chi} + U \frac{\partial^2 u}{\partial \gamma \partial \chi} + \frac{\partial \nu}{\partial \gamma} \frac{\partial \nu}{\partial \chi} + v \frac{\partial \nu}{\partial \gamma} \right) + \frac{\partial^2 P}{\partial \gamma \partial \chi} = \frac{\partial^2 P}{\partial \gamma \partial \chi}.$$

$$\left(\frac{\partial u}{\partial \chi} \frac{\partial u}{\partial \gamma} + U \frac{\partial^2 u}{\partial \gamma \partial \chi} + \frac{\partial \nu}{\partial \chi} \frac{\partial \nu}{\partial \gamma} + v \frac{\partial \nu}{\partial \gamma} \right) + \frac{\partial^2 P}{\partial \chi \partial \gamma} = \frac{\partial^2 P}{\partial \chi \partial \gamma}.$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} - \cos q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} - \cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} = 0,$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \chi^2} + \cos q \frac{\partial^2 \chi}{\partial \gamma^2} - \cos q \frac{\partial^2 \chi}{\partial \chi \partial \gamma} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} = 0,$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} - \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} - \cos q \frac{\partial^2 \chi}{\partial \gamma^2} = 0,$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \cos q \frac{\partial^2 \chi}{\partial \gamma^2} = 0.$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} - \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} - \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} - \cos q \frac{\partial^2 \chi}{\partial \gamma^2} = 0,$$

$$\cos \chi \frac{\partial^2 \chi}{\partial \gamma^2} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \sin q \frac{\partial^2 \chi}{\partial \gamma \partial \chi} + \cos q \frac{\partial^2 \chi}{\partial \gamma^2} = 0.$$
Then, we use these two equations together to find $\frac{\partial^2 q}{\partial x \partial y}$ and $\frac{\partial^2 w}{\partial x \partial y}$. After that, substitute the value of mixed derivatives into (12), we get the following

$$
w \frac{\partial q}{\partial x} - 2w \frac{\partial q}{\partial y} - 6w \frac{\partial^2 q}{\partial x^2} - 2w \frac{\partial^2 q}{\partial y^2} - 2w \frac{\partial^2 q}{\partial x \partial y}
$$

$$
+ w^2 \cos \sin \left(\frac{\partial^2 q}{\partial x^2} \right) - 2w \cos \sin \left(\frac{\partial^2 q}{\partial x \partial y} \right) - 2w \cos \sin \left(\frac{\partial^2 q}{\partial y^2} \right) - 2w \frac{\partial^2 q}{\partial x \partial y} = 0.
$$

To eliminate the terms underlined, it is convenient to use continuity (11). The multiplication of (11) by $\frac{\partial w}{\partial x} \sin q$ gives us the value of $\left(\frac{\partial w}{\partial x} \right)^2 \cos q \sin q$. The multiplication of these values, of (11) by $w \cos q \frac{\partial q}{\partial x}$ gives us the value of $w \cos q \sin q \frac{\partial w}{\partial x} \frac{\partial q}{\partial y}$. The multiplication of (11) by $w \sin q \frac{\partial q}{\partial y}$ gives us the value of $w \cos q \sin q \frac{\partial w}{\partial x} \frac{\partial q}{\partial y}$.

Then the substituting these values, $\left(\frac{\partial w}{\partial x} \right)^2 \cos q \sin q, \left(\frac{\partial w}{\partial y} \right)^2 \cos q \sin q, w \cos q \frac{\partial w}{\partial x} \frac{\partial q}{\partial y}$, and $w \cos q \sin q \frac{\partial w}{\partial x} \frac{\partial q}{\partial y}$, into (13) instead of the terms underlined, after simplification, we obtain

$$
\frac{\partial}{\partial x} \left(w^2 \frac{\partial q}{\partial x} \right) + \frac{\partial}{\partial y} \left(w^2 \frac{\partial q}{\partial y} \right) = 0.
$$

All above algebraic manipulation are done by MAPLE program.

IV. TRANSFORMATION FROM CARTESIAN COORDINATES (x, y) TO GENERALIZED CURVILINEAR COORDINATES (ϕ, ψ)

The computation of flow fields in and around complex shapes such as ducts, engine, complete aircraft or automobiles, etc., involves computational boundaries that do not coincide with coordinate lines in a physical domain. For finite difference methods, the imposition of boundary conditions for such problems motivate the introduction of a mapping or transformation from physical (x, y) domain to a generalized curvilinear coordinate space. The generalize coordinate domain is constructed so that a computational boundary in a physical domain coincides with a coordinate line in a generalized coordinate space.

The use of generalized coordinates implies that a distorted region in a physical domain is mapped into a rectangular region in the generalized coordinate space as shown in Fig. 3.

Next, we introduce new independent variables ϕ and ψ. We will choose ψ which is similar to a stream function and ϕ as an independent function which is similar to the potential. It is assumed that there is a unique, single-valued relationship between the generalized coordinates and the physical coordinates which can be written as

$$
\phi = \phi(x, y), \psi = \psi(x, y)
$$

and by implication

$$
x = x(\phi, \psi), y = y(\phi, \psi).
$$

The specific relationship is given by the equations for total differentials of ϕ and ψ, respectively

$$
d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy = \frac{\cos q}{\phi} dx + \frac{\sin q}{\phi} dy,
$$

$$
d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = -cw \sin q dx + cw \cos q dy.
$$

In (16) and (17), c is a constant, and $\phi(x, y)$ is a new unknown function. These values are chosen such that the new variables (ϕ, ψ) are functionally independent, i.e. the Jacobian is not equal to zero

$$
J(x, y) = \frac{\partial(\phi, \psi)}{\partial(x, y)} = \frac{cw}{\phi} \neq 0.
$$

Equation (16) has to deter mine unique function $\phi(x, y)$. It means that the mixed derivatives are equal, i.e.

$$
\frac{\partial^2 \phi(x, y)}{\partial x \partial y} = \frac{\partial^2 \phi(x, y)}{\partial y \partial x}.
$$

Substitution of $\frac{\partial \phi}{\partial y}$ and $\frac{\partial \phi}{\partial x}$ from (16) into (18) gives the equation...
\[
\frac{\partial}{\partial x} \left(\sin q(x, y) \right) \frac{\partial}{\partial y} \left(\phi(x, y) \right) = \frac{\partial}{\partial y} \left(\cos q(x, y) \right) \frac{\partial}{\partial x} \left(\phi(x, y) \right). \tag{19}
\]

Equation (19) may be used as an additional equation for the new unknown function \(\phi(x, y) \). From (16) and (17), we have the value of partial derivatives
\[
\frac{\partial \phi}{\partial y} = \sin q; \quad \frac{\partial \phi}{\partial x} = \cos q;
\]
\[
\frac{\partial \psi}{\partial y} = -cw \sin q; \quad \frac{\partial \psi}{\partial x} = cw \cos q.
\tag{20}
\]

To transform the system of (11), (14) and (19) to new independent variables, we need to know the values of \(\frac{\partial x}{\partial \phi}, \frac{\partial x}{\partial \psi}, \frac{\partial y}{\partial \phi}, \) and \(\frac{\partial y}{\partial \psi} \). It is easy to show that
\[
\begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Really, we have
\[
\begin{align*}
\frac{dx}{d\phi} &= \frac{\partial x}{\partial \phi} d\phi + \frac{\partial x}{\partial \psi} d\psi, \\
\frac{dy}{d\psi} &= \frac{\partial y}{\partial \phi} d\phi + \frac{\partial y}{\partial \psi} d\psi,
\end{align*}
\]
or in a matrix form
\[
\begin{bmatrix}
\frac{dx}{d\phi} \\
\frac{dy}{d\phi}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
\begin{bmatrix}
d\phi \\
d\psi
\end{bmatrix}.
\]

Solving this matrix equation, for the right-hand column matrix, we have
\[
\begin{bmatrix}
d\phi \\
d\psi
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}^{-1}
\begin{bmatrix}
dx \\
dy
\end{bmatrix}.
\]

This matrix form can be compared with the matrix form
\[
\begin{bmatrix}
d\phi \\
d\psi
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}
\begin{bmatrix}
dx \\
dy
\end{bmatrix}.
\]

Therefore
\[
\begin{bmatrix}
d\phi \\
d\psi
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
\begin{bmatrix}
dx \\
dy
\end{bmatrix}.
\]

Following the standard rules for finding the inverse matrix, this equation is written as follows
\[
\begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}^{-1}
\begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}.
\]

or
\[
\begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}
\end{bmatrix}
= \frac{1}{J}
\begin{bmatrix}
\frac{\partial \psi}{\partial y} & -\frac{\partial \phi}{\partial y} \\
-\frac{\partial \psi}{\partial x} & -\frac{\partial \phi}{\partial x}
\end{bmatrix}
\]

where the Jacobian \(J \) is defined as
\[
J = \frac{\partial(x, y)}{\partial(\phi, \psi)} = \begin{bmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi}
\end{bmatrix}
= \frac{cw \cos^2 q}{\phi} + \frac{cw \sin^2 q}{\phi} = cw \neq 0.
\]

Since the Jacobian \(J \neq 0 \), then \(\phi \) and \(w \) are not equal to zero. Finally, we can rewrite (21) in the form
\[
\begin{align*}
\frac{\partial x}{\partial \phi} &= \frac{1}{J} \frac{\partial y}{\partial \psi} = \phi \cos q, \\
\frac{\partial x}{\partial \psi} &= \frac{1}{J} \frac{\partial x}{\partial \phi} = -\sin q, \\
\frac{\partial y}{\partial \phi} &= \frac{1}{J} \frac{\partial y}{\partial \psi} = \phi \sin q, \\
\frac{\partial y}{\partial \psi} &= \frac{1}{J} \frac{\partial x}{\partial \phi} = \cos q.
\end{align*}
\tag{22}
\]

The first step: We transform the continuity (3). Substitution of \(u = w \cos q \) and \(v = w \sin q \) into this equation yields
\[
\frac{\partial w \cos q}{\partial x} + \frac{\partial w \sin q}{\partial y} = 0
\]
or
\[
\cos q \frac{\partial w}{\partial x} - \sin q \frac{\partial w}{\partial y} + w \frac{\partial q}{\partial x} - \sin q \frac{\partial q}{\partial y} = 0.
\tag{23}
\]

V. RESULTS

By using the chain rule, we have the formulas to change partial derivatives
\[
\frac{\partial}{\partial x} \left(\frac{\partial q}{\partial \phi} \right) + \frac{\partial}{\partial y} \left(\frac{\partial q}{\partial \psi} \right) = \frac{\cos q \, \partial}{\partial \phi} + \frac{\sin q \, \partial}{\partial \psi}
\]
\[
\frac{\partial}{\partial t} \left(\frac{\partial q}{\partial \phi} \right) + \frac{\partial}{\partial y} \left(\frac{\partial q}{\partial \psi} \right) = \frac{\cos q \, \partial}{\partial \phi} + \frac{\sin q \, \partial}{\partial \psi}
\]

(24)

\[
\frac{\partial}{\partial \phi} \left(\frac{1}{w} \right) = \frac{\cos q \, \partial}{\partial \psi},
\]
\[
\frac{\partial}{\partial \phi} = -\frac{1}{cw \, \partial \phi}
\]

and another is elliptic

\[
\frac{\partial}{\partial \phi} \left(\frac{w^2 \, \partial q}{\partial \phi} \right) + \varepsilon^2 w^2 \phi \frac{\partial}{\partial \psi} \left(\frac{w \, \partial q}{\partial \psi} \right) = 0.
\]

ACKNOWLEDGMENT

I wish to record our thanks to Prof. Dr. Nikolay Moshkin for giving the idea, Phranakhon Rajabhat University and Thailand Research Fund for financial supporting this work.

REFERENCES

VI. CONCLUSION

The Euler equations are expressed in terms of new unknown functions which are the flow angle (angle between the direction of the velocity vector and direction of the Ox axis) and the modulus of the velocity vector. The new independent variables are used to transform the physical domain to the canonical computational domain. Then, the governing equations into two subsystems, one is hyperbolic