
Zero-knowledge-like Proof of Cryptanalysis of
Bluetooth Encryption

Éric Filiol

Abstract— This paper presents a protocol aiming at proving that an
encryption system contains structural weaknesses withoutdisclosing
any information on those weaknesses. A verifier can check in a
polynomial time that a given property of the cipher system output
has been effectively realized. This property has been chosen by the
prover in such a way that it cannot been achieved by known attacks or
exhaustive search but only if the prover indeed knows some undis-
closed weaknesses that may effectively endanger the cryptosystem
security. This protocol has been denotedzero-knowledge-like proof of
cryptanalysis. In this paper, we apply this protocol to the Bluetooth
core encryption algorithm E0, used in many mobile environments and
thus we suggest that its security can seriously be put into question.

Keywords— Bluetooth encryption, Bluetooth security, Bluetooth
protocol, Stream cipher, Zero-knowledge, Cryptanalysis

I. I NTRODUCTION

Encryption is the most important part in computer se-
curity mechanisms and protocols: the one who can bypass
cryptographic protection, gains total control over the system.
Password management, secure network transmission protocol,
wireless protocol (security part of Wep, WPA, Bluetooth,
GSM...), integrity checking (e.g. in antivirus software),data
protection, login authentication... are well-known examples
whose security heavily relies on cryptographic mechanisms.

The encryption cryptographic core uses the stream cipher
E0, whose key entropy is 128 bits. The key length thus
prevents any cryptanalysis by exhaustive search. Moreover, up
to now, the encryption security of E0 has not been challenged
from a practical point of view. A dozen of attacks have
been published [1], [3], [2], [5], [6], [9], [10], [12], [13],
[14]. They are of theoretical interest only. Unless irrealistic
assumptions are to be made, E0 has not been broken yet and
the cryptographic security of Bluetooth protocol is still very
high.

However, publishing any efficient cryptanalytic techniques
that may practically put cryptographic security into question is
an essential question. While it is important to make engineers,
vendors and users aware of a real risk, there are more
important reasons not to technically explain what the level
of risk really is:

• disclosing any technical, reproducible and usable data
provides information that the “bad guys” will use to per-
form attacks. As far as embedded encryption is concerned
(WEP, Bluetooth, GSM...), changing the core encryption
algorithm is very costly and takes too much time. Months

Also Eric.Filiol@inria.fr
E. Filiol is with the Lab. of Virology and Cryptology, ESAT, Rennes

(France)
Email: eric.filiol@esat.terre.defense.gouv.fr

or even years are generally required before all weak
devices are replaced. The vendors try to make their
technical investments financially profitable enough before
changing the whole cryptographic standard while users
are generally reluctant to change their equipment. During
this transition period, an important number of attacks may
be performed.

• disclosing any technical information that allow to bypass
or hurt computer security is generally prosecuted in many
countries (one example among others is the FrenchLaw
for Confidence in the e-Economy1 [11]). Moreover, such
disclosing can be prosecuted as copyright infringement
as well. The best known-example is undoubtly the US
Digital Millenium Copyright Act[19]. But retaining any
information about any system vulnerability, a software
flaw or any weakness and communicating it only to the
developers may incitate them not to react for commercial
purposes.

The question actually is the following one: how to prove
in a uncriticizable way but without disclosing any useful,
reproducible technical data that a cryptographic system can,
may or might be broken in practise?

In this paper, we will consider the case of the Bluetooth
encryption system (E0) and explain how to solve this prob-
lem. Recent and significant progress has been made in the
cryptanalysis of symmetric ciphers. We detected and identified
serious cryptographic weaknesses in E0 that could be used to
break it in practice in a near future. This result is proved
without giving any clue about the weaknesses and the way
they can be exploited. Nonetheless, any reader with basic
cryptographic knowledge will be able to be convinced that
it is possible through a simple polynomial time verification.
We call this method of proofZero-knowledge-like proof of
cryptanalysis(0-Kl proof for short).

The paper is organized as follows. Section II recalls the
required background and notation in cryptography. SectionIII
recalls how the Bluetooth encryption works. Section IV then
presents the Zero-knowledge-like proof of cryptanalysis itself.
Section VI then deals with future work and draws a conclusion.
The E0 reference implementation is given in Appendix A.
Appendix B contains detailed numerical values. Both ap-
pendices are essential to make Zero-knowledge-like proof of
cryptanalysis work.

1According to Article 323-3-1 of the Penal Code, it is punishable by
imprisonment not exceeding three years and a fine of up to 45,000 euros.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2435International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

II. BACKGROUND AND NOTATION

First of all, we are going to define whatZero-knowledgeis
generally referred to. Zero-knowledge is a property attributed
to interactive proofs, in which aprover convinces averifier
of the validity of a given statement. The prover has no
particular restriction whereas the verifier is restricted to use a
(probabilistic) polynomial time algorithm. By Zero-knowledge
proof, we mean that the verifier is convinced without the
prover releasing any knowledge beyond the validity of the
statement. This concept has been introduced for the first time
by Goldwasser and al. [8]. The reader will find a detailed
overview of zero-knowledge proofs in [7].

For the non cryptologist reader’s sake, let us now recall
the definition of a stream cipher. A stream cipher is a
symmetric cipher – in other words, the same secret key is
employed for both the encryption and the decryption – which
operates in the following way: a sequence of plaintext bits
m0, m1, . . . , mi, . . . is encrypted into a sequence of ciphertext
bits c0, c1, . . . , ci, . . . by means of a pseudo-random sequence
s0, s1, . . . , si, . . . called thekeystream. The most common way
of encryption is given by

ci = mi ⊕ si

The keystream is produced by a finite state automaton whose
initial state is precisely the secret key shared by both emitter
and receiver.

Like for any other encryption algorithm, performing an ex-
haustive search cryptanalysis consists in trying every possible
key until the right key that had been used to produce a given
keystream has been detected. In the context of the paper, we
search for secret keys that produce keystreams having some
given properties. Up to now, no method except exhaustive
search is known to achieve that property for a keystream.

Let us state more clearly the total amount of work required
by an exhaustive search. Let us consider a secret keyK of
n bits and let us consider a propertyP for the corresponding
(output) keystream of lengthn. Thus, finding a key which pro-
duces a keystream having propertyP requiresnO(1).O(2n−m)
operations where2m represents the total number of keys for
which P is satisfied. Let us notice that in classical exhaustive
searchm = 0 (there is only one key producing a fixed
keystream).

A random searchconsists in trying at random a large
enough number of keys until a given fixed property is obtained
or, equivalently, keeping the keys that output sequences which
exhibit non-trivial properties.

The Hamming weightof a sequence(st)0≤t≤n, denoted
wt((st)0≤t≤n) is the number of non-zero bits:

wt((st)0≤t≤n) = {0 ≤ t ≤ n|st = 1}.

III. T HE BLUETOOTH ENCRYPTION

The Bluetooth security mechanisms are presented in part H
of Volume 2 of [18]. In the Bluetooth standard, the security
layer is one of the baseband layers (hardware level), which
the upper layers control (host and application levels). The
security mechanisms include key management, as well as
key generation protocols, user/device authentication, and data

encryption. The data encryption algorithm used within the
Bluetooth security architecture is the E0 stream cipher.

Each time two Bluetooth devices need to communicate
securely, they first undergo authentication and key exchange
protocols whose purpose is to agree on a shared secret (thelink
key), which is used to generate the encryption key (KC). This
latter key is derived from the current link key, an encryption
offset number (COF), that is known from the authentication
procedure done prior to the encryption phase, and a public
known random number (ENRAND).

To cipher a payload packet, the private keyKC is modified
into another key denotedK ′

C . Then K ′
C is used in a linear

manner, along with the publicly known values, the master
device Bluetooth address (MAC address), and a clock value,
which is different for each payload packet, to form the initial
state for a two-level stream cipher as depicted in Figure 1.
The encryption algorithm E0 generates a binary keystream,
Kcipher, which is bitwise xored with the plain text. Decryp-
tion is performed in exactly the same way using the same key
as used for encryption (xor addition being involutive). Any
real-life cryptanalysis of E0 will greatly challenge the overal
security. Besides the fact that it would then be possible to
manipulate the encrypted data stream between devices that
communicate (insertion of malicious code for example), cou-
pled with recent efficient attack of the Bluetooth authentication
and key negotiation protocol [17], the ability of retrieving
the secret encryption key could make other attacks on overal
cryptographic security easier.

A. The E0 Stream Cipher

Let us now consider the encryption core denoted E0.
E0 stream cipher uses linear feedback shift registers (LF-

SRs) whose output is combined by a simple finite state
machine (called the summation combiner) with 16 memory
states. The output of this state machine is the keystream
sequence, or, during initialization phase, the randomizedinitial
start value. The algorithm uses an encryption keyKC , a
48-bit Bluetooth address, the master clock bitsCLK26−1,
and a 128-bit RAND value. Figure 2 shows the encryption
engine setup. There are four LFSRs (LFSR1, . . . , LFSR4)
of lengthsL1 = 25, L2 = 31, L3 = 33 and L4 = 39 with
feedback polynomials as specified in Table I. The total length
of the registers is 128. These primitive polynomials have been
chosen as they exhibit the best trade-off between hardware
implementation constraints and excellent statistical properties
of the output sequences. Letxi

t denote thet-th symbol of

TABLE I

THE FOUR PRIMITIVE FEEDBACK POLYNOMIALS

i Li Feedback polynomials

1 25 x
25

⊕ x
20

⊕ x
12

⊕ x
8
⊕ 1

2 31 x
31

⊕ x
24

⊕ x
16

⊕ x
12

⊕ 1
3 33 x

33
⊕ x

28
⊕ x

24
⊕ x

4
⊕ 1

4 39 x
39

⊕ x
36

⊕ x
28

⊕ x
4
⊕ 1

LFSRi. The valueyt is derived from the 4-tuplex1

t , x
2

t , x
3

t , x
4

t

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2436International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

Fig. 1. Functional description of the Encryption Procedure

Fig. 2. Functional description of the Encryption Procedure

using the following equation:

yt =
4∑

i=1

xi
t,

where the sum is over the integers. Thusyt can take the values
0, 1, 2, 3 or 4. The output of the summation generator is
obtained by the following equations:

zt = x1

t ⊕ x2

t ⊕ x3

t ⊕ x4

t ⊕ c0

t ∈ {0, 1},

st+1 = (s1

t+1
, s0

t+1
) = ⌈

yt + ct

2
⌉ ∈ {0, 1, 2, 3},

ct+1 = (c1

t+1
, c0

t+1
) = st+1 ⊕ T1[ct] ⊕ T2[ct−1],

whereT1[.] and T2[.] are two different linear bijections over
GF (4) summarized in Table II. The E0 algorithm needs to

TABLE II

E0 BIJECTIVE MAPPINGS

x T1[x] T2[x]

00 00 00
01 01 11
10 10 01
11 11 10

be initialized with an initial value for the four LFSRs (the
secret keyK ′

C) and the four bits that specify the values of
c−1 andc0. The keyK ′

C and the 4-bit value are produced by
an initialisation step involving E0 and the secret keyKC , a
48-bit Bluetooth address, the master clock bitsCLK26−1, and

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2437International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

a 128-bit RAND value.

B. E0 Cryptanalysis State-of-the-Art

Stream cipher E0 is so far considered as a secure encryption
algorithm. In particular, it has very good statistical properties
and complies to the NIST statistical test suite [16]. No
significant bias has been detected with respect to the tests of
this suite.

A number of E0 cryptanalysis have been proposed so far.
They can be divided into two sets, according to the number
of frames required for the cryptanalysis to work :

• Long keystream attacks.- These attacks consider the Blue-
tooth encryption outside its real-life mode of operation.
They require a too long keystream to actually challenge
E0 security. They are for most of them correlation or
fast correlation attacks, that is to say that they exploit
some correlation between the outputs of the LFSR and
the output sequence itself. Two attacks consider [1], [3]
linearization of non linear equations whose unknowns
are secret key bits. Table III summarizes the required
amount of keystream bits (data) and the complexity
(precomputation, time and memory) for each of those
attacks.

• Short keystream attacks.- These methods consider a very
short known keystream (128 bits). Despite their still
high complexity, these attacks are far more realistic than
long keystream attacks. So far only a few such short
key cryptanalysis are known: use of Binary Decision
Diagrams [10] or backtracking methods [12] have opened
a promising field of cryptanalytic research. Table IV
compares complexity of known short keystream attacks.

TABLE IV

COMPLEXITY COMPARISON FORBEST SHORT KEYSTREAM ATTACKS ON

E0

Attacks Known keystream bits Attack complexity

Bleichenbacher [2] 128 2100

Krause [10] 128 281

Levy - Wool [12] 128 286

IV. Z ERO-KNOWLEDGE-LIKE PROOF OFCRYPTANALYSIS

The attacks presented in the previous section all require irre-
alistic assumptions to work in practice such as a huge amount
of known plaintext bits and/or a dramatically high computing
complexity. Let us consider now sequences of known plaintext
of length n. The core idea of the zero-knowledge-like proof
of cryptanalysis is to consider a mathematical property that
cannot be achieved in real-life, unless to effectively knowing
one or more weaknesses. The following definition will help
us to make it clearer.

Definition 1: (Zero-knowledge-like proof of cryptanalysis)

Let be a cryptosystemSK and a propertyP about the
output sequence of lengthn produced bySK denotedσn

K .
No known method other than exhaustive search or random

search can obtain propertyP for σn
K . Then, azero-knowledge-

like proof of cryptanalysisof S consists in exhibiting se-
cret keysK1, K2, . . . , ...Km such that the output sequences
(σn

Ki
)1≤i≤m verify P and such that, checking it requires

polynomial time complexity. Moreover, the propertyP does
not give any information on the way it was obtained.
The protocol proposed in Definition 1 is not a true zero-
knowledge protocol (hence the termzero-knowledge-like) for
the following reasons:

1) a paper is not an interactive medium;
2) the author of the cryptanalysis plays the role of the

prover and answers questions which have not been asked
by the verifier, e.g. the reader.

Another point worth considering is that the reader/verifier
can bring up against the author/prover that some random
keys has been taken, the keystream has been computed and
afterwards been claimed that the keystreams properties have
been desired. In other words, the author/prover tries to fool
the verifier/reader by using exhaustive search to produce the
properties that have been considered for the zero-knowledge-
like proof protocol. Thus the relevant properties must be
carefully chosen such that:

• the probability to obtain them by random search over the
key space makes such a search untractable. This point is
treated in Section IV-A, IV-B and IV-C. In the contrary
the verifier/reader would be able to himself exhibit secret
keys producing keystream having the same properties by
a simple exhaustive search;

• the known attacks cannot be applied to retrieve secret
keys from a fixed keystream having the properties con-
sidered by the author/prover.

• to really convince the reader/verifier, a large number
of secret keys must be produced by the author/prover,
showing that “he was not lucky”.

Since there do not exist any known method other than exhaus-
tive search or random search to produce output sequencesσn

K

having propertyP , and since the complexity of a successful
search is too high in practice, anybody who is effectively
able to exhibit a secretK producing such output sequences
obviously has found some unknown weaknesses he used to
obtain this result. The probability of realizing propertyP
through an exhaustive search gives directly the upper bound
complexity of the zero-knowledge-like proved cryptanalysis.

The last point to weigh up is to determine whether the fact
knowing some flaw in a cryptographic design implies that
it is possible to break it. The academic approach generally
considers the following established cryptanalytic models:

• either an attacker knows some keystream bits and wants
to recover the secret key,

• or the attacker wants to efficiently distinguish a keystream
produced by a particular keystream generator from a truly
random keystream2.

2However, it remains an open problem which consists in proving that having
a efficient distinguiser at one’s disposal is equivalent to effectively be able
to break the relevant cryptosystem. The distinguisher issue relates more to
a steganographic (transmission security or equivalently the security of the
transmission channel itself) issue than to pure communication security issues.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2438International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

TABLE III

COMPLEXITY COMPARISON FORBEST LONG KEYSTREAM ATTACKS ON E0

Attacks Data Precomp. Attack complexity Memory

Fluhrer - Lucks [5] 243 - 273 251

Fluhrer [6] 212.4 280 265 280

Golic & al. [9] 217 280 270 280

Armknecht - Krause [1] 224 - 268 248

Courtois [3] 224 - 249 237

Lu & Vaudenay [13] 239.6 - 240 235

Lu & al. [14] 228.4 238 238 233

Well in the context of the present paper, the model we consider
is not so far from the first case as long as the properties
we considered are effectively not reproducible by another
approach than a true cryptanalytic one: we fix somea priori
keystreams exhibiting given properties and we must retrieve
the corresponding secret key for each of them. In other words:

• in the classical case, a cryptanalyst aims at guessingK =
E−1

0
(σK) for somea priori fixed output sequenceσK ;

• in our case, we consider a subsetSP of binary sequences
having a a priori fixed propertyP . These sequences
represent output sequences produced by E0. We then aim
at recoveringKSP = E−1

0
(SP).

We will consider in the rest of the paper output sequence of
lengthn = 128. This particular value is based on two reasons:

• this length value is more realistic when considering
real use of E0 encryption in Bluetooth communication
protocol (see Section III);

• choosing a short sequence value clearly reinforces the
level of attack efficiency (the sequence length is equal
to the secret key entropy) and thus the 0-Kl proof of
cryptanalysis.

Moreover, since E0 stream cipher exhibits all cryptographic
properties that any strong cryptosystems fullfil and provided
that secret keys are random variables overF 128

2
, any output

sequenceσ128

K is a random variable as well which has uniform
distribution overF 128

2
. Let us now consider two properties for

our purpose of 0-Kl proof of cryptanalysis.

A. The Hamming Weight Property

We will first try to find secret keysK such thatσ128

K = SK

has Hamming weight at most equal to some valuek. This
sequence will be denotedσ128,k+

K . In particular, we will focus
on small values fork since the sparsity of sequence is a
property that is difficult to achieve. The same approach could
consider in the same way sequence of weight at least equal
to k for large value ofk. To state things more clearly, the
probability to obtain a sequenceσ128,k+

K is given by Formula
(1).

P [σ128,k+

K] =
1

2128
×

(
k∑

i=0

(
128
i

))
= pk+ (1)

This result is obvious when considering simple combinatorial
properties.

In the same way, we may consider output sequences of
length n = 128 whose Hamming weight exactly equalsk.

These sequences will be denotedσ
128,k
K . Then the probability

of such a sequence is given by

P [σ128,k
K] =

1
2128

×

(
128
k

)
= pk. (2)

Now considering the Hamming weight property implies that
if we want to find a secret keyK that outputs a sequence
σ

128,k+

K (respectively a sequenceσ128,k
K) no other method

than a exhaustive search or random search of complexity
Ck+ = 1

pk+
(resp. Ck = 1

pk

) is known unless using some
undisclosed weaknesses. Table V gives numerical values for
different values ofk. These results show that complexityCk+

TABLE V

COMPLEXITY FOR THE HAMMING WEIGHT PROPERTY(RANDOM

SEARCH; n = 128)

k Ck+ Ck k Ck+ Ck

30 230.52 231.04 22 246.36 246.69

29 232.27 232.76 21 248.66 248.97

28 234.08 234.54 20 251.04 251.33

27 235.97 236.39 19 253.51 253.78

26 237.90 238.31 18 256.06 256.31

25 239.91 240.30 15 264.27 264.48

24 241.99 242.35 10 280.18 280.31

23 244.14 244.48 5 299.96 2100.02

is systematically lower than complexityCk. As a matter of
fact, it is better to consider the property relevant toCk with
k ≤ 22 at least, for our purposes.

B. The Run Property

The purpose is now to find secret keys for whichSK outputs
a sequence whoser first bits are all zeroes (runs of zeroes).
Sequences satisfying this property will be denotedσ

128,r
K . The

probability of such a sequence is given by

P [σ128,r
K] =

2128−r

2128
=

1
2r

= pr. (3)

The proof is obvious when considering basic combinatorics.
The resulting complexity to find such a sequence at random
is

Cr = 2r. (4)

As for the Hamming weight property, if we manage to exhibit
a secret keyK such thatSK output a sequenceσ128,r

K , for
relatively large value ofr, then we 0-Kl prove that we know

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2439International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

a far more efficient attack than the exhaustive search which is
untractable at the present time.

The reader will note that any fixed sequence with some
structure could be used instead of runs, provided that any
verifier is convinced that this sequence has not been chosen
after an simple encryption process (a posteriorichoice). This
is the reason why we choose runs of zeroes which can be
considered as a rather “remarquable sub-sequence”.

C. Cumulating Hamming Weight and Run Properties

We now want to find secret keys such thatSK outputs a
sequence whoser first bits is a run of zeroes and whose
Hamming weight is equal tok. Such a sequence will be
denotedσ128,r,k

K . It is then easy to prove that the probability
to find such a key at random (exhaustive search) is given by

P [σ128,r,k
K] =

(
128−r

k

)

2128
= pr,k. (5)

The resulting complexity to find such a key is given by

Cr,k =
2128

(
128−r

k

) . (6)

In the same way, we can consider output sequences with runs
located anywhere in the sequence and not only at the begin-
ning. Such a sequence is denotedσ

128,r+,k
K . The probability

to find such a key at random (exhaustive search) is given by

P [σ128,r,k
K] =

(128 − r)
(
128−r

k

)

2128
= pr+,k. (7)

The resulting complexity to find such a key is given by

Cr+,k =
2128

(128 − r)
(
128−r

k

) . (8)

Table VI compares the different complexityCk, Ck+, Cr and
Cr,k for different values ofk andr. Note that the complexities
we have given in the present section refer to the detection of
one unique secret keyK. Looking for ν such keys increases
the relevant complexity in the same order of magnitude. In
other words, we have to multiply the complexity byν.

V. E0 ZERO-KNOWLEDGE-LIKE PROOF OF CRYPTANALYSIS

Important weaknesses have been identified for E0. To the
author’s knowledge, they have never been published so far.
These weaknesses are mainly of combinatorial nature. The
CoHS3 and VAUBAN packages have been used in a precom-
puting step. The first package is a combinatorial flaw scanner
whereas the second one translates the detected flaws into one
or more statistical estimators suitable for cryptanalysis. They
both are non public packages which are developped in our
laboratory.

All the two properties have been successfully considered.
Each time secret keys have been found for different values
of k and r. For the run property, without loss of generality,
we considered run of zeroes. The memory bitsc−1 and c0

have been chosen equal to zero as well. This appears to be a
more challenging choice: the null vectorK = (0, 0, 0, . . . , 0)

3CoHSstands forCombinatorics over Huge Sets

TABLE VI

COMPLEXITY COMPARISON FORHAMMING WEIGHT AND RUN

PROPERTIES(RANDOM SEARCH; n = 128)

(r, k) Ck+ Ck Cr Cr,k Cr+,k

(69, 29) 232.27 232.76 269 272.28 266.40

(69, 27) 235.97 236.39 269 272.57 266.69

(69, 25) 239.91 240.30 269 273.25 267.36

(68, 27) 235.97 236.39 268 271.71 265.80

(67, 26) 237.90 238.31 267 271.24 265.31

(67, 24) 241.99 242.35 267 272.27 266.34

(66, 29) 232.27 232.76 266 269.49 263.53

(66, 26) 237.90 238.31 266 270.45 264.50

(65, 28) 234.08 234.54 265 268.87 262.89

(65, 27) 235.97 236.39 265 269.23 263.25

(65, 26) 237.90 238.31 265 269.69 263.71

(64, 27) 235.97 236.39 264 268.44 262.44

(63, 29) 232.27 232.76 263 266.87 260.85

(63, 28) 234.08 234.54 263 267.23 261.20

(63, 27) 235.97 236.39 263 267.67 261.64

(62, 29) 232.27 232.76 262 266.04 259.99

(62, 28) 234.08 234.54 262 266.43 260.38

(62, 27) 235.97 236.39 262 266.91 260.86

(62, 26) 237.90 238.31 262 267.47 261.43

(60, 23) 244.14 244.48 260 268.52 262.43

obviously produces in this setting the null sequence. Thus
retrieving keys that zeroes ther first bits while having non
zero Hamming weight increases the difficulty. However, the
results could be obtained for any other settings (runs of ones
and different memory bits initialisation).

The precomputing step with the two packages took approx-
imatively one week of computing time on a Athlon 64. The
work must be done only once (and for all). For each possible
choice of runs and valuesk and r, the cryptanalysis step is
performed (on four DEC 9000 machines). The first keys have
been retrieved within the first hour while slightly more than
five weeks have been necessary to retrieve slightly more than
48,000 keys. Some of the most significant sequences are given
in Appendix B. Table VII provides results about the number
of secret keys retrieved for each property, during five weeks
of computing (detailed results available upon request). The

TABLE VII

NUMBER OF KEYS FOUND WITH RESPECT TOPROPERTIES(n = 128)

k Hamming weight prop. (r, k) Cumulated prop.

19 1 (69, 29) 1
20 5 (69+, 27) 1
21 18 (69+, 25) 1
22 38 (66+, 26) 3

most significant results deals with the retrieval of a secret
key K outputting a sequenceσ128,69,29

K . Finding such a key
would require an exhaustive or a random search of272.28,
in average. For the moment, this cannot be achieved with
existing computing resources. Consequently, this impliesto
know weaknesses enabling to retrieve such a key faster than
with exhaustive search.

The approximative equivalent complexity of the compu-

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2440International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

tation which enables to recover slightly more than 48,000
has been empirically evaluated by comparing the number of
keys effectively treated by the attack with respect to the time
that a simple exhaustive search would require. This yields a
complexity of O(235). The theoretical value of complexity
has been computed but the proof will not be given in order to
the cryptanalysis remains zero-knowledge-like. Let us mention
that theoretical, expected and observed complexities do not
significantly differ.

At last, the properties we have considered does not provide
any information about the method to obtain them. In other
words, the verifier cannot induce what weaknesses have been
exploited.

At the present time, none of the known attacks can obtain
the results we have presented in this paper: either building
secret keys producing keystream with given properties or
retrieving secret keys from fixed keystream with desired prop-
erties. However, it is an open problem to determine whether
the attacks of Table IV can be modified or improved to obtain
the results presented before.

VI. FUTURE WORK AND CONCLUSION

In this paper, we have presented a scheme to prove the
cryptanalysis of an encryption algorithm without disclosing
any information on the nature of the cryptanalysis, while
any verifier can check in a polynomial time the reality of
that cryptanalysis. It becomes then acceptable to disclose
information about the weaknesses of cryptosystems without
fearing that “bad guys” will reproduce and use it for real
attacks purpose. This scheme can be applied to any symmetric
cryptosystem (stream ciphers or block ciphers).

At the present time, the results exhibited in this paper
(Table VII and Section B) allow to greatly put E0 security into
question. In the future, viral attacks could occur by precisely
bypassing Bluetooth security at the cryptographic level ifany
other people found equivalent or more important weaknesses
in E0. That kind of risk cannot be denied.

As far as E0 stream cipher is concerned, current work is in
progress to greatly improve the efficiency of our attack while
new properties for 0-Kl proof of cryptanalysis will be consid-
ered. Other cryptosystems used in real transmission protocols
are currently analysed with CoHS and Vauban packages in
order to exhibit vulnerabilities that could be exploitablein
practical cryptanalysis.

REFERENCES

[1] Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with
Memory. In Boneh, D. (ed) Advances in Cryptology - CRYPTO’03,
LNCS 2729, pp. 162–175, Springer Verlag (2003).

[2] Bleichenbacher, D. (2001), Personal communication in Jakobsson, M.,
Wetzel S., “Security weaknesses in Bluetooth” inProc. RSA Security
Conf. – Cryptographer’s Track, LNCS 2020, pp. 176–191, Springer-
Verlag.

[3] Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback. In Boneh, D. Advances in Cryptology - CRYPTO’03, LNCS
2729, pp. 176–194, Springer-Verlag, 2003.

[4] Filiol, E.: Computer Viruses: from Theory to Applications. IRIS Inter-
national Series, Springer Verlag, ISBN 2-287-23939-1, (2005).

[5] Fluhrer, S., Lucks, S.: Analysis of the E0 Encryption System. In
Vaudenay, S., Youssef, A. (eds) Selected Areas in Cryptography - SAC
2001, LNCS 2259, pp. 38–48, Springer-Verlag (2001).

[6] Fluhrer, S.: Improved Key Recovery of Level 1 of the Bluetooth Encryp-
tion System, available athttp://eprint.iacr.org/2002/068 ,
(2002)

[7] Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge
University Press, Cambridge, (2001).

[8] Goldwasser, S., Micali S., Rackoff C.: The Knowledge-complexity of
Interactive Proof Systems. SIAM Journal on Computing,18, 186–208
(1989).

[9] Golic, J., Bagini, V., Morgani, G.: Linear cryptanalysis of Bluetooth
stream cipher. In Knudsen, L. (ed) Advances in Cryptology - EURO-
CRYPT’02, LNCS 2332, pp. 238–255, Springer Verlag (2002).

[10] Krause, M.: BDD-based cryptanalysis of keystream generators. In Knud-
sen, L. (ed) Advances in Cryptology - EUROCRYPT 02, LNCS 2332,
pp. 222–237, Springer-Verlag (2002).

[11] Loi pour la confiance en l’économie numérique (Law forConfidence
in the e-Economy), Journal Officiel, June 22nd, 2004. A detailed
presentation of this law as well as comments and legal explanation of
this law can be found in English in [4, Chap. 5].

[12] Levy, O., Wool, A.: A Uniform Framework for Cryptanalysis of the
Bluetooth E0 Cipher. Available ateprint.iacr.org/2005/107.
pdf , (2005).

[13] Lu, Y., Vaudenay, S.: Faster correlation attack on Bluetooth keystream
generator E0. In Franklin, M. (ed) Advances in Cryptology - CRYPTO
04, LNCS 3152, pp. 407–425, Springer-Verlag (2004).

[14] Lu, Y., Meier, W., Vaudenay, S.: The Conditional Correlation Attack: A
Practical Attack on Bluetooth Encryption. In Shoup, V. (ed)Advances
in Cryptology - CRYPTO’05, LNCS 3621, pp. 97–117, Springer Verlag,
(2005).

[15] Saarinen, M.-J., “A Software Implementation of the BlueTooth Encryp-
tion Algorithm E0”. Available at http://www.jyu.fi/˜mjos/
e0.c

[16] Revised NIST Special Publication 88-22: A StatisticalTest Suite for the
Validation of Ramdom Number Generator and Pseudo-random Number
Generator for Cryptographic Applications. National Institute of Standard
and Technology, US Commerce Department’s Technology Administra-
tion, http://csrc.nist.gov/rng/rng2.html , (2000).

[17] Shaked, Y., Wool, A.: Cracking the Bluetooth PIN. InProc. 3rd
USENIX/ACM Conf. Mobile Systems, Applications, and Services (Mo-
biSys), Seattle, pp. 39–50, ISBN 1-931971-31-5 (2005).

[18] “Specification of the Bluetooth system”, v.2.0. Core specification,
2004. Available fromhttp://www.bluetooth.org/foundry/
adopters/document/Core_v2.0_EDR/en/1/Core_v2.0_
EDR.zip

[19] U.S. Copyright Office Summary (1998), “The Digital Mille-
nium Copyright Act of 1998”, http://www.copyright.gov/
legislation/dmca.pdf

APPENDIX

A. E0 Reference Implementation

We give here the E0 implementation in C programming
language, that has been used for this cryptanalysis. Is it mainly
based on Saarinen’s reference implementation [15]. The reader
thus will be able to verify our results.

1) Header File “include.h”:

#include "stdio.h"
#include "stdlib.h"

#define mot64 unsigned long long int
#define mot32 unsigned long int
#define int32 long int
#define mot16 unsigned int
#define mot08 unsigned char

2) Header File “e0light.h”:

#include <stdio.h>
typedef unsigned char mot08;
typedef unsigned long long mot64;

const mot08 e0_fsm[16][16] = {
{ 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,

1, 1, 2},
{ 5, 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 7, 4,

7, 7, 7},

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2441International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

{11, 11, 11, 8, 11, 8, 8, 8, 11, 8, 8, 8, 8,
8, 8, 9},

{14, 13, 13, 13, 13, 13, 13, 12, 13, 13, 13, 12, 13,
12, 12, 12},

{ 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2,
2, 2, 1},

{ 6, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 4, 7,
4, 4, 4},

{ 8, 8, 8, 11, 8, 11, 11, 11, 8, 11, 11, 11, 11,
11, 11, 10},

{13, 14, 14, 14, 14, 14, 14, 15, 14, 14, 14, 15, 14,
15, 15, 15},

{ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 3},

{ 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5,
6, 6, 6},

{10, 10, 10, 9, 10, 9, 9, 9, 10, 9, 9, 9, 9,
9, 9, 8},

{15, 12, 12, 12, 12, 12, 12, 13, 12, 12, 12, 13, 12,
13, 13, 13},

{ 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3,
3, 3, 0},

{ 7, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6,
5, 5, 5},

{ 9, 9, 9, 10, 9, 10, 10, 10, 9, 10, 10, 10, 10,
10, 10, 11},

{12, 15, 15, 15, 15, 15, 15, 14, 15, 15, 15, 14, 15,
14, 14, 14}

};

static mot64 e0_r1, e0_r2, e0_r3, e0_r4;
static int e0_state, e0_x, e0_z;

3) Encryption Procedure:

#include "e0light.h"

int e0(mot64 K1, mot64 K2, mot08 KA, mot08 * suite,
mot64 nbbit)

{
unsigned long int i;
int t;

/ * Register Initialisation * /
e0_r1 = (K1 & 0x1FFFFFFL);
e0_r2 = ((K1 >> 25) & 0x7FFFFFFFL);
e0_r3 = (((K1 >> 56) | (K2 << 8)) & 0x1FFFFFFFFLL);
e0_r4 = (K2 >> 25);

e0_state = KA;

for(i = 0; i < nbbit;i++)
{

e0_r1 = ((e0_r1 << 1) & 0x1fffffe) | (((e0_r1 >> 7)
ˆ (e0_r1 >> 11) ˆ (e0_r1 >> 19)
ˆ (e0_r1 >> 24)) & 1);

e0_r2 = ((e0_r2 << 1) & 0x7ffffffe)
| (((e0_r2 >> 11)
ˆ (e0_r2 >> 15) ˆ (e0_r2 >> 23)
ˆ (e0_r2 >> 30)) & 1);

e0_r3 = ((e0_r3 << 1) & 0x1fffffffell)
| (((e0_r3 >> 32)

ˆ (e0_r3 >> 27) ˆ (e0_r3 >> 23)
ˆ (e0_r3 >> 3)) & 1);

e0_r4 = ((e0_r4 << 1) & 0x7ffffffffell)
| (((e0_r4 >> 38)

ˆ (e0_r4 >> 35) ˆ (e0_r4 >> 27)
ˆ (e0_r4 >> 3)) & 1);

e0_x = ((e0_r1 >> 23) & 1) | ((e0_r2 >> 22) & 2)
| ((e0_r3 >> 29) & 4) | ((e0_r4 >> 28) & 8);

e0_state = e0_fsm[e0_state][e0_x];
t = e0_x ˆ (e0_x >> 2);
t ˆ= t >> 1;

suite[i] = (t ˆ (e0_state >> 2)) & 1;
}

}

4) Main Procedure:

#include "include.h"

#define N 128
#define KA 0 / * Initial memory bits * /

int main(int argc, char * argv[])
{

mot64 i, j, i0, i1, i2 , i3, K[2];
mot32 m;
mot08 * suite, ka, k;

K[0] = <------- bits 0 -- 63 of secret key
K[1] = <------- bits 64 -- 127 of secret key

suite = (mot08 *)calloc(N, sizeof(mot08));
suite_sc = (mot08 *)calloc(N, sizeof(mot08));
suite_ka = (mot08 *)calloc(N + 2, sizeof(mot08));

e0(K[0], K[1], KA, suite, 128LL);
printf("Output sequence\n\n");
for(i = 0L; i < 128;i++) printf("%01d", suite[i]);
printf("\n\n");
free(suite);

}

B. Proof Values of 0-K Cryptanalysis
In this section, we give some of the keys producing the

most significant properties. Detailed results are available upon
request (slightly more than 48,000 keys). The notation is that
of themain() procedure given in the previous section of the
Appendix.

(69,29)
K[0] = 0x104766230DF89169 K[1] = 0xC95B9D50C7DF0C57

(69+, 27)
K[0] = 0x11F212120260467F K[1] = 0x11FEA949B6B759CA

(69+, 25)
K[0] = 0x27D5C62B6FDD0146 K[1] = 0x4B01AAE56E878393

(68+, 27)
K[0] = 0xFAA732EC24CBBF08 K[1] = 0xF7D90592E202CFE3

(67+, 24)
K[0] = 0x73CD595AD3FD6A26 K[1] = 0x4E5BB736824EFAC4

(67+, 26)
K[0] = 0x481AC9D68A265BB6 K[1] = 0x9C49E65F2C5AC7EC

(66+, 26)
K[0] = 0x19D2C332127ACF17 K[1] = 0x3616434EA1A991A
K[0] = 0xD15D3CA3C5240B4D K[1] = 0x11BDAC9BE5D608D2
K[0] = 0x1168C994D63DBEE1 K[1] = 0xA52DB3C47F6E4B78

(66+, 29)
K[0] = 0x4AA088310330E134 K[1] = 0x886554F41774B5DF

(65+, 26)
K[0] = 0x499B5A23B09E73C7 K[1] = 0xBF9A060F485F8708

(65+, 27)
K[0] = 0x49EE7FAEDE74A51B K[1] = 0x9EF861C90E85C6A0

(65+, 28)
K[0] = 0xCB9E8BC74B91EA42 K[1] = 0x4575201CFBDC7FF9

(64, 27)
K[0] = 0x09F51F2AEE52BBCC K[1] = 0x345991408FD0A40B

(63+, 27)
K[0] = 0x3AF59A1AB3849A22 K[1] = 0xA8F0630AAB90E4EE

(63+, 29)
K[0] = 0xC98D344092E7B8A6 K[1] = 0x18FFAA9AB4BB0FB2
K[0] = 0x3395F4E0AA7F2AAA K[1] = 0x7D3C8F1CC1A9FB61
K[0] = 0x60595B6C3F81FBC7 K[1] = 0x39608B22C62E8C79

(63+, 28)
K[0] = 0x0DB55B6143A3DF6A K[1] = 0xC69A087CB6FA29E5

(62, 29)
K[0] = 0x18C1077579DD290B K[1] = 0x5B672FC8D0CCE243

(62, 27)
K[0] = 0xF11D6526C305E816 K[1] = 0x35BE571A69C9B6EA

(62+, 29)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2442International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

K[0] = 0xC88DDB3D2D6415F4 K[1] = 0xA219615A07B7BFFF
K[0] = 0xC40BA27939383C32 K[1] = 0xC1692DEF036E7049
K[0] = 0x9D45CC6215D1E5B3 K[1] = 0x39CB14370AEB1CB2

(61+, 29)
K[0] = 0xF1F70889D3A6FF5D K[1] = 0x4DD6D71E317B540B
K[0] = 0x1B9456D34AA3E596 K[1] = 0x9E183710E7B6138B

(62+, 27)
K[0] = 0x44F646AB3AED19E0 K[1] = 0xC3BC20A780A2BA3E
K[0] = 0x42461FB9C07F3F9D K[1] = 0x746A780C6A649D6B

(62+, 26)
K[0] = 0x7B1B5463C802FFB5 K[1] = 0xA3FDF5940264D28B
K[0] = 0x89E14644C0AD64BB K[1] = 0xC077883C768664D5
K[0] = 0x33E24602D7A02C18 K[1] = 0xBF3C9A7CD53C865D

(62+, 28)
K[0] = 0x125D85B3A3353C2A K[1] = 0xA8E12FDAD9269406

(61+, 27)
K[0] = 0x2FA83A7A4959C2FE K[1] = 0xCCF65606210D32C9

(61+, 26)
K[0] = 0xF01896F8455DDBD5 K[1] = 0x604AC5B5048A233D

(60+, 23)
K[0] = 0xB8F7ABBACC30347F K[1] = 0xEEDC60766DAA3F32

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2443International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

62
6.

pd
f

