
An Idea About How to Teach OO-Programming to
Students

Irene Rothe
Bonn-Rhein-Sieg University of Applied Sciences

St. Augustin, Germany
irene.rothe@h-brs.de

Abstract—Object-oriented programming is a wonderful way to
make programming of huge real life tasks much easier than by using
procedural languages. In order to teach those ideas to students, it
is important to find a good task that shows the advantages of OO-
programming very naturally. This paper gives an example, the game
Battleship, which seems to work excellent for teaching the OO ideas
(using Java, [1], [2], [3], [4]).

A three-step task is presented for how to teach OO-programming
using just one example suitable to convey many of the OO ideas.
Observations are given at the end and conclusions about how the
whole teaching course worked out.

Keywords—OO ideas, Java, teaching, engineering students.

I. MOTIVATION

Somehow it seems not easy to teach the beauty of object-
oriented (OO) programming to students. However, it should
be easy because it is so much more related to our daily life
than procedural programming.

The goal of my programming class was to teach the main
concepts of object-oriented thinking, and how to create useful
objects and using inheritance.

For my OO-programming teaching class I was looking for
an interesting task to be implemented by the students which
is totally easy to get and where during the programming
the OO-idea comes into everyones mind kind of naturally.
Explaining then the OO-principles to the students at the right
minute makes them feel almost happy and relieved. Getting
so wonderful programming tools makes it very easy for them.

The class described here covers one block in a Computer
Science module for engineering students. The progamming
language Java is used. In general, most of the students had
already attented a class about procedural programming. For all
three steps of my task I gave the students handouts including
the detailed tasks and some hints.

II. THE TASK: BATTLESHIP

Almost everyone remembers the game Battleship (usually
played with pencil and paper) from boring school days. So,
there is no need to waste much time explaining the rules. On
the other hand, the game Battleship is not trivial to implement
and bears wonderful possibilities to apply the OO ideas.

The game Battleship is a guessing game played by two
people, say player A and player B. Each player starts with a
map (here called the sea map) consisting of 10 by 10 squares
which build a grid. At the beginning each player sets ships on
this map, for example one 3er ship, one 2er ship and two 1er
ships (a ship consists of 3, 2 or 1 squares next to each other

arranged either horizontally or vertically filled for example
with the letter S like ship), which the other player is not able
to see. The ships do not overlap. Further, each player has
another map of the same size (here called the enemy map)
where he records all results of his shooting against the enemy
(the other player).

The game works as follows:
1) Both players get their maps settled and the ships arranged. For example,

player A’s sea map could look like:
0 1 2 3 4 5 6 7 8 9

0
1
2
3 S S S S
4
5
6 S
7 S S
8
9

2) One player, say A, shoots on the ships of player B by typing
some (x, y)-coordinates into the computer program, for example x-
coordinate 6 and y-coordinate 8, which means that the square on
position (6, 8) on the sea map of player B gets a hit.

3) The program gives then an output on the screen about this shot: success
or failure. Further, in the enemy map of player A a cross X (ship got
hit) or a tilde ˜ (water got hit) is drawn, correspondently.

4) The current enemy map of player A is shown on the screen.
5) Now, its player B’s turn.
6) The game is over if one player has successfully eliminated all ships of

the other player. This player is the winner.

III. IMPLEMENTATION STEPS

To comprehend the OO ideas step by step, the students have
to program three versions of the game re-using everything they
have done in the steps before. The educational hope behind this
approach is to create wishes in the heads of the students what
the programming language should make possible and then tell
them SURPRISE! object-oriented languages offer everything
you wish for.

First, the students are asked to implement the game of
Battleship in a way where one human player fights against a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:6, 2010 

1104International Scholarly and Scientific Research & Innovation 4(6) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

6,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

56
9.

pd
f



hidden fixed ship constellation (all ships are situated on fixed
positions inside the programming code) in front of the screen.
This seems not like much fun but students can very easily do
it in whatever procedural programming language they already
know. Further, they can test their code and at least have a first
running version available. Later, they easily can exchange the
programming key words they used with Java programming key
words, which are very similar in most programming languages,
then and compile the code again using the Java compiler
javac.

The second step is to move over to a game with two players
(both human) who shoot against each others ship armies. In
order to do this, the students in general want to use functions.
But while thinking about functions they also end up with a
lot of variables (especially finding names for the two maps
of the two players), which is kind of stressful to organize.
Further, they have to pay a lot of attention to which player
uses which map and not mixing up any ownerships. That
is the minute, where the teacher can help and tell them to
think about defining a new object (similar to already existing
data types, for example int or float) which represents a
general Battleship-player. So they have to make lists of what a
Battleship-player owns and is allowed/capable to do. Then he
tells them how to implement their own class for a Battleship-
player with class variables for the maps a player owns and
methods for all the business the player is allowed to do during
the game like shooting and recording the successes and failures
of the shots and so on. The real player will then be built as an
instance of this new defined class when the main-programm
is executed.

At last, the students implement a Battleship game version
where one human player plays against the computer for which
it is so wonderful to use the Battleship-player class and inherit
all the variables and methods over to a new Computer class
without listing all the belongings and capabilities of the player
class in the code again. The students only have to implement
everything a computer does differently than the human player
specified in the player class.

IV. GETTING STARTED

The sea map and enemy map can easily be implemented in
Java as two-dimensional arrays of characters:
char [10][10] seamap;
where the positions for the ships run from

seamap[0][0], seamap[0][1], ...,
seamap[0][9],.

The enemy map should be implemented analogously:
char [10][10] enemymap;

V. GAME WITH ONE PLAYER AGAINST A FIXED

CONSTELLATION OF SHIPS

A fixed constellation of ships might look as follows:

//a fixed constellation of ships
//first ship
seamap[3][3] = ’S’;
seamap[4][3] = ’S’;
seamap[5][3] = ’S’;
//second ship

seamap[3][6] = ’S’;
seamap[3][7] = ’S’;
//two more small ships
seamap[8][3] = ’S’;
seamap[7][7] = ’S’;

A simple version of the Java program might look as follows:

class BattleshipGame{
public static void main(String args[]){

//declarations and initialization
...
//positioning of the ships
...
//start of the game
while (...){

//there are still ships over sea level
//shooting of the player:(x,y)-coordinates
...
//evaluation of the shooting:
//success or failure
...

}
//output: player won
System.out.println ("All ships are destroyed!");

}
}

The students can do this code implementation with whatever
programming language they already know.

It should be easy to switch all the programming key words
over to Java programming key words and translate the new
Java code via the Java compiler javac.

VI. TWO PLAYERS VERSION

Now, the students are asked to change their code in a way
that the game runs with two human players who fight against
each other sitting in front of the same computer screen.

A good student remembers from his procedural program-
ming language class that it is a fine thing to use functions to
structure their code. But after thinking a while about all this
they may realize that they end up having to deal with a lot of
variables, for example four maps for the two players, and they
have to pay attention to which map belongs to which player
and which player is allowed to see or write into which map.

Now, the teacher can hand over the idea about what an
object is and what it can be used for, and how to define one
in a new class.

Definition of a player class

The teacher lets the students collect all actions a player
is allowed to do and all belongings a player owns. Further,
he tells them to look for nice words which define the above
actions clearly and shortly.

They should come up with a list similar to this:
• Belongings of a player:

– seamap,
– enemymap.

• Actions of a player:
– placeships: The player places his ships on the seamap.
– shooting: The player shoots at the ships of the other player by

typing the x- and y-coordinates in the keyboard of the computer.
– evaluation: The player tells the other player if a ship or water

was hit by his shot.
– recording: Success or failure of the shot is recorded in the

enemymap.
– printmap: The enemymap of the player who shot is printed.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:6, 2010 

1105International Scholarly and Scientific Research & Innovation 4(6) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

6,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

56
9.

pd
f



Nice Question for the students: Why is evaluation and
recording not in just one method?

With the help of the list of all actions a player is allowed to
do and all belongings a player owns, the students are able to
create a new class called Player. The definition of the maps
a player owns will be the instance variables and the actions a
player is capable to do will be defined via methods with input
and output parameters. The new class is implemented in a file
called Player.java. This will be a non-executable class.

To implement all the methods, we have to decide about the
input and output parameters, which are the things a player
says and a player hears in the real world.

For example, while using the method recording
a player hears the result of his shooting at position
(xcoordinate, ycoordinate) which is a success or
a failure and says nothing. That means the method might
look as follows: recording(result, xcoordinate,
ycoordinate) with no output paramater.

So, the Player class might look at the end similar to this:

class Player{
//declaration of the maps
private char [][] seamap = new char [10][10];
private char [][] enemymap = new char [10][10];
String name;
//Default-constructor
Player(){}
//constructor
Player (String name, int numberofships){

//local variables and others
...
this.name=name;
this.numberofships=numberofships;
...

}
void placeships(){...}
... shooting(){...}
int evaluation(...){...}
void recording(int result, ...){...}
void printmap(){...}

}

Now, also Java key words like private make perfect sense
because it is clear that each of the two maps are owned only
by the corresponding player.

Note that there are many possibilities for how to deal with
the coordinates of the shots which is the reason for not giving
the complete Java code here.

Using the Player class in the game by generation of two
real players

In the main program two objects for the two players will
be created, for example playerA and playerB. A player
is generated in Java as follows:

<data type> <name of variable> =
new <name of the constructor of the class>

(<variables of the constructor>);

That means for our players:

Player playerA = new Player("PlayerA",numberofships);
Player playerB = new Player("PlayerB",numberofships);

Methods are used as follows:

<name of player variable>.<name of method>

Game with two players

Now, it is much easier for the students to build up the
game loop for two players in the main program by using the
advantages of the new implemented class Player. They do
not have to struggle with map names and which map belongs
to which player or who can write in which map or putting
player names in the heads of functions and so on. The new
class Player defined as described above will take care of all
this. If player A records something in his map, it will neatly
go into the right map.

The game loop might look as follows:
1) Player A puts his ships on his map: playerA.placeships();
2) Player B puts his ships on his map: playerB.placeships();
3) Player A shoots by typing the coordinates of his shot:

playerA.shooting();
4) Player B sends the result of the shooting:

playerB.evaluation(...);
5) Player A puts the result in his map: playerA.recording(...);
6) The enemymap of player A is printed on the screen:

playerA.printmap();
7) Now, its player B’s turn who starts with shooting at player A’s ships.

VII. PLAYER CLASS IS EXTENDED TO A NEW COMPUTER
CLASS

To have more fun with the game, the students are now asked
to replace one human player by a computer player so that they
can play against the computer. A computer player is similar
to a human player, so the students do not want to implement
everything from scratch. That means, the new Computer
class should somehow use parts of the Player class, and
it would be useful if no one has to copy all the methods
and variables they need from the Player class into the new
Computer class. It is now time for the students to learn about
inheritance in OO programming languages which will make
their code implementing life much easier. OO-programming
allows to use (without retyping) already implemented code by
extending it through inheritance.

So, first the students have to think about what a computer
player does like a human player and what it does differently.
They should come up with the result that a computer player
shoots differently and places its ships differently, for example
randomly. Everything else the Computer does as it is already
implemented in the Player class.

So, the computer class could look as follows:

class Computer extends Player {
//generating random numbers
...
Computer(...){super(...);}
void placeships(){...}
...shooting(){...}

}

In the above class two methods are overwritten from the
Player class. Almost nothing else has to be changed or
added to the Player class, only the key word private has
to be replaced by the key word protected (meaning that
all subclasses can use those maps as well). So the Computer
class can be constructed without touching the Player class
and still be able to use the code from the Player class.

At last, the students have to put in the computer player into
the main program by exchanging one player with a computer
player:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:6, 2010 

1106International Scholarly and Scientific Research & Innovation 4(6) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

6,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

56
9.

pd
f



Computer playerB = new Computer(...);

VIII. OBSERVATION

The students were kind of heterogenous, some students
already knew some ideas of OO-programming and others
never heard anything about it.

Because the game was divided into small steps to motivate
the students to get ideas for the next step, almost all of the
students made it to the end and finally were happy to play
the game by themselves against the computer. Because in our
implemented game the computer places its ships randomly and
shots randomly the students also got a real feeling for what
for a big task testing can be. This gave the students a feeling
of how the life of a programmer can be.

Very interesting discussions with the students came up
during the programming phase. The teacher tried not to force
the students to implement code in the way my own solution
looked like. He always wanted them to create their own game
even if this meant more flexibility and work from my side.
At the end the students felt like they did exactly what they
wanted to implement which gave them more self-confidence.

IX. CONCLUSIONS

It was a great idea to start with a task which was clear from
the beginning. So, there was no time wasted for explaining
what the students are supposed to implement. For students
who already knew something about OO-programming, it was
kind of confusing to start with a procedural version. But then
they even got a deeper understanding of how helpful object-
oriented programming can be.

It was possible to help the students understand why it is
wonderful to create their own objects, how useful inheritance
can be, what instance and class variables are, how methods are
defined, what specific Java key words mean, what overwriting
is, and more.

REFERENCES

[1] D.J. Barnes and M. Klling, Objektorientierte Programmierung mit Java,
Pearson Studium, 2003.

[2] C.S. Horstmann, G. Cornell, core Java, Band 1 - Grundlagen, Addision-
Wesley, 2005.

[3] J. Bishop, Java lernen, Pearson Studium, 2005.
[4] R. Schiedermeier, Programmieren mit Java, Pearson Studium, 2005.

Irene Rothe Irene Rothe works at the Applied University of Bonn-Rhein-
Sieg in Germany and teaches computer sciences to engineering students and
journalist students.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:6, 2010 

1107International Scholarly and Scientific Research & Innovation 4(6) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

6,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

56
9.

pd
f




