Computationally Efficient Signal Quality Improvement Method for VoIP System

H. P. Singh, and S. Singh

Abstract—The voice signal in Voice over Internet protocol (VoIP) system is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss jitter. The work in this paper presents the implementation of finite impulse response (FIR) filter for voice quality improvement in the VoIP system through distributed arithmetic (DA) algorithm. The VoIP simulations are conducted with AMR-NB 6.70 kbps and G.729a speech coders at different packet loss rates and the performance of the enhanced VoIP signal is evaluated using the perceptual evaluation of speech quality (PESQ) measurement for narrowband signal. The results show reduction in the computational complexity in the system and significant improvement in the quality of the VoIP voice signal.

Keywords—VoIP, Signal Quality, Distributed Arithmetic, Packet Loss, Speech Coder.

I. INTRODUCTION

Voice over IP is a technology that enables the users to transmit voice over the internet or a local area network using internet protocol (IP). This technology provides benefits such as low cost compared to the traditional Public Switched Telephone Network (PSTN). With the efficient use of bandwidth requiring fewer long-distance trunks between switches, VoIP system costs as much as half the traditional PSTN system in the field of voice transmission [1]. Packet switched networks like the Internet, are based on the Best-effort policy which does not guarantee a minimum packet loss rate and a minimum delay of packet transmission required for the VoIP system. This results in harmful effects on the quality of VoIP, since speech packets can be discarded when routers or gateways are congested. Due to the real time requirement for interactive speech transmission, it is usually impossible for the receivers to request the sender to retransmit the lost packets. When voice packets do not arrive before their playout time, they are considered as lost and cannot be played when they are received. One of the most difficult problems in such networks is the packet loss issue. Even a single lost packet may generate audible distortion in the decoded speech signal. To reduce the effect of packet loss on perceived speech quality, the lost packets have to be regenerated at the receiver using packet loss concealment algorithms [2].

Since the work done in the literature was only to improve the speech coders and some optimization techniques were applied to reduce the processing time. But the work in this paper differs that window based finite impulse response filters are applied to improve the signal quality in narrowband VoIP system through distributed arithmetic algorithm to improve the signal quality and reduce the system complexity. The brief description of the related work is presented in Section II. The section III describes the design of the digital filters using distributed arithmetic algorithm for the VoIP system. The modeling of the IP network and VoIP simulations are presented in Section IV. The performance analysis results and discussion are presented in Section V. The last section concludes the work and presents the future work.

II. RELATED WORK

The lost packets were also regenerated with the use of time scale modification algorithms [3, 4]. Feng et.al implemented ITU-T G.729 and G.723.1 speech codecs on TMS320C6201 DSP processor and used the optimization methods used to reduce the speech processing time. With the optimizations applied, G.729 codec was able to process concurrently 20 voice channels and G.723.1 codec able to process 18 voice channels with a single TMS320C6201 chip in IP telephony gateway [5, 6]. Han et.al [7] had raised the issue of noise reduction for VoIP speech codecs and proposed a modified Wiener filter based noise reduction scheme and applied the proposed system as preprocessing before the speech encoding. Several multiplier-less schemes had been proposed. These methods can be classified in two categories according to how they manipulate the filter coefficients for the multiply operation. The first type of multiplier-less technique is the conversion-based approach, in which the coefficients are transformed to other numeric representations whose hardware implementation or manipulation is more efficient than the traditional binary representation. The example of such techniques are the Canonic Sign Digit (CSD) method, in which coefficients are represented by a combination of powers of two in such a way that multiplication can be simply implemented with adder/subtractors and shifters [8], and the Dempster-McLeod method, which similarly involves the representation of filter coefficients with powers of two and in this case arranging partial results in cascade to introduce further savings in the usage of adders [9]. The second type of multiplier-less methods involve the use of memories (RAMs, ROMs) or Look-Up Tables (LUTs) to store pre-computed values of coefficient operations. These memory-based methods involve Constant Coefficient Multiplier method and the very-well known Distributed Arithmetic method [10].

H P Singh is with Department of Physics, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India (phone: 9101812690301; e-mail: harjitNit@yahoo.co.in).

S Singh is with Department of Physics, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India (phone: 9101812690301).
III. DISTRIBUTED ARITHMETIC FOR FILTER DESIGN

The window based low pass FIR filter is designed. FIR filter is an all-zero filter in the sense that the zeroes in the z-plane determine the frequency response magnitude characteristic [11-13]. The basic FIR filter is characterized by:

\[y(n) = \sum_{k=0}^{N-1} h(k) x(n-k) \]

where, \(x(n) \) is the input sampling sequence, \(h(k) \) is the filter coefficients, \(N \) is the order of the filter and \(y(n) \) is the filter output sequence. The system function can be expressed in terms of the convolution as:

\[y(n) = x(n) * h(n) \]
\[y(n) = x(0) * h(n) + x(1) * h(n-1) + x(2) * h(n-2) + \ldots + x(n) * h(0) \]

The discrete time Fourier transform of a finite sequence impulse response \(h(n) \) is given by

\[H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n} = |H(e^{j\omega})| e^{j\Phi(\omega)} \]

The output in distributed arithmetic form:

\[y = \left(\sum_{n=0}^{N-1} h(n) x(n) \right) \]

Alternatively, Distributed Arithmetic (DA) is an important algorithm used in computing the sum of the products:

\[y[n] = <h, x> = \sum_{n=0}^{N-1} h[n] x[n] \]

DA system, assumes that the variable \(x[n] \) is represented by:

\[x[n] = \sum_{b=0}^{B-1} x_b[n] 2^b, x_b[n] \in [0,1] \]

If \(h[n] \) are the coefficients of the FIR filter, then the output of FIR filter in the bit level form is:

\[y = \sum_{b=0}^{B-1} h[n] x_b[n] 2^b \]

In distributed form:

\[y = \sum_{n=0}^{N-1} \left(\sum_{b=0}^{B-1} h[n] x_b[n] \right) 2^b \]

The modified filter coefficients are obtained by rounding the filter coefficients to the nearest integer after being multiplied with a constant integer value. The multiplied constant was chosen to be a power of 2, in such a way that the new modified filter coefficients must contain at least 93 % of the signal power [14]. The similar time and frequency responses were obtained with modified coefficients as were obtained with the original coefficients. The frequency, phase and impulse responses of the original and modified filter coefficients are presented in the Fig.1- Fig.6. The filter coefficients obtained with the traditional scheme were 115 but with the proposed DA algorithm, the number of filter coefficients became 49. Since the FIR filter was designed with multiplier-less distributed arithmetic scheme, therefore the number of adders and addition operations must be a crucial point in the system computational complexity. The similar filter responses were obtained at the reduced computational complexity in the system.

![Fig. 1 Frequency Response of FIR filter with original Coefficients](image-url)
IV. IP NETWORK MODELING

To analyze the performance of the proposed scheme in the VoIP system, the system simulations were performed in varying conditions. The simulation of VoIP system was performed where each packet contains one frame. The packet losses are not independent on a frame-by-frame basis, but appear in bursts. The packet loss can be approximated by a Markovian loss model such as Gilbert model, as discussed by Bolot in [15]. Most research for VoIP networks uses a Gilbert Model to represent packet loss characteristics, since the complexity is increased through the higher order Markov models [16]-[21]. Thus the simulation of IP network was performed by using a 2-state Gilbert Model. The model has two states reflecting whether the previous packet is received or lost.

TABLE I

<table>
<thead>
<tr>
<th>PLR (%)</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0032</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>0.012</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>0.025</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>0.85</td>
</tr>
</tbody>
</table>
TABLE II

PESQ RESULTS FOR AMR-NB 6.70 KBPS FOR VOIP SYSTEM IN NOISY ENVIRONMENT

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>PLR (%)</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babble Noise</td>
<td>Car Noise</td>
<td>Street Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB</td>
<td>2</td>
<td>1.40</td>
<td>1.91</td>
<td>1.89</td>
<td>1.41</td>
<td>1.96</td>
<td>1.93</td>
<td>1.37</td>
<td>2.02</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.22</td>
<td>1.71</td>
<td>1.70</td>
<td>1.24</td>
<td>1.78</td>
<td>1.75</td>
<td>1.42</td>
<td>2.03</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.05</td>
<td>1.53</td>
<td>1.52</td>
<td>0.87</td>
<td>1.38</td>
<td>1.36</td>
<td>0.91</td>
<td>1.46</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.85</td>
<td>1.31</td>
<td>1.30</td>
<td>0.96</td>
<td>1.44</td>
<td>1.42</td>
<td>0.91</td>
<td>1.40</td>
<td>1.39</td>
</tr>
<tr>
<td>5 dB</td>
<td>2</td>
<td>1.66</td>
<td>2.17</td>
<td>2.15</td>
<td>1.49</td>
<td>2.01</td>
<td>1.98</td>
<td>1.68</td>
<td>2.30</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.45</td>
<td>1.97</td>
<td>1.96</td>
<td>1.41</td>
<td>1.93</td>
<td>1.92</td>
<td>1.42</td>
<td>1.97</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.23</td>
<td>1.69</td>
<td>1.67</td>
<td>1.09</td>
<td>1.56</td>
<td>1.53</td>
<td>1.18</td>
<td>1.66</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.08</td>
<td>1.52</td>
<td>1.50</td>
<td>0.88</td>
<td>1.29</td>
<td>1.27</td>
<td>1.18</td>
<td>1.60</td>
<td>1.59</td>
</tr>
<tr>
<td>10 dB</td>
<td>2</td>
<td>1.80</td>
<td>2.35</td>
<td>2.31</td>
<td>1.82</td>
<td>2.37</td>
<td>2.33</td>
<td>1.89</td>
<td>2.41</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.62</td>
<td>2.16</td>
<td>2.13</td>
<td>1.67</td>
<td>2.22</td>
<td>2.15</td>
<td>1.67</td>
<td>2.15</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.31</td>
<td>1.85</td>
<td>1.80</td>
<td>1.40</td>
<td>1.89</td>
<td>1.85</td>
<td>1.43</td>
<td>1.88</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.21</td>
<td>1.70</td>
<td>1.69</td>
<td>1.21</td>
<td>1.66</td>
<td>1.65</td>
<td>1.31</td>
<td>1.69</td>
<td>1.66</td>
</tr>
<tr>
<td>15 dB</td>
<td>2</td>
<td>2.05</td>
<td>2.66</td>
<td>2.63</td>
<td>1.88</td>
<td>2.47</td>
<td>2.43</td>
<td>2.02</td>
<td>2.49</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.83</td>
<td>2.41</td>
<td>2.38</td>
<td>1.73</td>
<td>2.28</td>
<td>2.28</td>
<td>1.80</td>
<td>2.49</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.50</td>
<td>2.01</td>
<td>1.96</td>
<td>1.34</td>
<td>1.88</td>
<td>1.88</td>
<td>1.61</td>
<td>2.06</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.43</td>
<td>1.91</td>
<td>1.88</td>
<td>1.28</td>
<td>1.74</td>
<td>1.74</td>
<td>1.42</td>
<td>1.83</td>
<td>1.80</td>
</tr>
</tbody>
</table>

TABLE III

PESQ RESULTS FOR G.729A FOR VOIP SYSTEM IN NOISY ENVIRONMENT

<table>
<thead>
<tr>
<th>SNR (dB)</th>
<th>PLR (%)</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
<th>None</th>
<th>FIR Filter</th>
<th>DAFIR Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babble Noise</td>
<td>Car Noise</td>
<td>Street Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB</td>
<td>2</td>
<td>1.54</td>
<td>2.15</td>
<td>2.12</td>
<td>1.44</td>
<td>2.03</td>
<td>2.01</td>
<td>1.45</td>
<td>2.06</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.19</td>
<td>1.74</td>
<td>1.72</td>
<td>1.29</td>
<td>1.84</td>
<td>1.82</td>
<td>1.06</td>
<td>1.64</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.11</td>
<td>1.60</td>
<td>1.59</td>
<td>1.16</td>
<td>1.64</td>
<td>1.64</td>
<td>0.99</td>
<td>1.63</td>
<td>1.57</td>
</tr>
<tr>
<td>5 dB</td>
<td>2</td>
<td>1.67</td>
<td>2.29</td>
<td>2.28</td>
<td>1.63</td>
<td>2.21</td>
<td>2.20</td>
<td>1.63</td>
<td>2.25</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.49</td>
<td>2.04</td>
<td>2.02</td>
<td>1.48</td>
<td>2.02</td>
<td>2.01</td>
<td>1.57</td>
<td>2.18</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.44</td>
<td>1.92</td>
<td>1.89</td>
<td>1.39</td>
<td>1.88</td>
<td>1.86</td>
<td>1.40</td>
<td>1.96</td>
<td>1.99</td>
</tr>
<tr>
<td>10 dB</td>
<td>2</td>
<td>1.87</td>
<td>2.42</td>
<td>2.40</td>
<td>1.92</td>
<td>2.51</td>
<td>2.51</td>
<td>1.89</td>
<td>2.54</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.80</td>
<td>2.28</td>
<td>2.26</td>
<td>1.78</td>
<td>2.33</td>
<td>2.31</td>
<td>1.78</td>
<td>2.37</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.50</td>
<td>1.95</td>
<td>1.93</td>
<td>1.57</td>
<td>2.06</td>
<td>2.04</td>
<td>1.60</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.39</td>
<td>1.83</td>
<td>1.80</td>
<td>1.49</td>
<td>1.94</td>
<td>1.94</td>
<td>1.48</td>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>15 dB</td>
<td>2</td>
<td>2.03</td>
<td>2.64</td>
<td>2.62</td>
<td>2.02</td>
<td>2.66</td>
<td>2.63</td>
<td>2.02</td>
<td>2.69</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.84</td>
<td>2.33</td>
<td>2.32</td>
<td>1.85</td>
<td>2.43</td>
<td>2.40</td>
<td>1.94</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.72</td>
<td>2.17</td>
<td>1.17</td>
<td>1.76</td>
<td>2.30</td>
<td>2.29</td>
<td>1.68</td>
<td>2.20</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.56</td>
<td>2.00</td>
<td>1.99</td>
<td>1.61</td>
<td>2.06</td>
<td>2.04</td>
<td>1.61</td>
<td>2.12</td>
<td>2.12</td>
</tr>
</tbody>
</table>

The state “0” represents that a packet being correctly received and state “1” represents that a packet being lost. The Gilbert model is shown in Fig 7.
Let p be the transition probability of the network model to drop a packet given that the previous packet is delivered i.e. the probability for the network model to go from state “0” to state “1”. Let q be the probability for the network model to drop a packet given that the previous packet is dropped, i.e. the probability for the network model to stay in state “1”. This probability is also known as the conditional loss probability. Let p_0 and p_1 denote the probability of the network model to be in state 0 and 1. The probability for a packet to be dropped regardless whether the previous packet is delivered or dropped i.e. the unconditional loss probability is exactly the probability for the network model to be in state 1 (p_1).

$$p_0 = \frac{q}{p+q}, \quad p_1 = \frac{p}{p+q}$$ \hspace{1cm} (11)

The transition matrix is given as

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$ \hspace{1cm} (12)

V. SIMULATION RESULTS IN NOISY ENVIRONMENT

The simulation for IP system is performed in noisy environments with different types of noise (babble, car and street) at SNR of 0, 5, 10, 15 dB. The speech samples for simulations were taken from [22]. The noisy speech signal is encoded into VoIP frames using AMR-NB 6.70 kbps [23] and G.729a [24] for narrowband VoIP system. The network configurations were introduced into VoIP frames with the modeling of the IP network through Gilbert model. The VoIP packet is dropped if it is in the “Error” state otherwise it is retained. The speech signal of VoIP system is degraded at different packet loss rates (PLR), which are simulated through different combinations of the p and q, as discussed in Table I. Then resulting stream of frames decoded using G.729A decoder. The performance is evaluated with Perceptual Evaluation of Speech Quality (PESQ) measurement defined by ITU-T recommendation P.862 [25] for narrowband VoIP system. After comparing the degraded signal with the original one, the PESQ measurement gives the subjective measurement as Mean Opinion Scores (MOS) value.

VI. CONCLUSION & FUTURE WORK

The work presented in the paper proposed the use of the distributed arithmetic algorithm in FIR filter for signal quality improvement of the VoIP speech signal. The results revealed that the improvement in the VoIP speech signal was achieved almost up to the same quality level as obtained with the implementation of the FIR filter with original coefficients, but at the advantage of the reduced system computational complexity. The implementation of the proposed filter on VoIP speech signal not only improves the speech quality but also try to retain the spectral shape of the original signal. In future, the study can be performed on faster digital signal processors such as TMS320C6713 to improve the signal quality of VoIP system.

REFERENCES

