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Abstract—Cosmic showers, during the transit through space, pro-
duce sub - products as a result of interactions with the intergalactic
or interstellar medium which after entering earth generate secondary
particles called Extensive Air Shower (EAS). Detection and analysis
of High Energy Particle Showers involve a plethora of theoretical and
experimental works with a host of constraints resulting in inaccuracies
in measurements. Therefore, there exist a necessity to develop a
readily available system based on soft-computational approaches
which can be used for EAS analysis. This is due to the fact that soft
computational tools such as Artificial Neural Network (ANN)s can be
trained as classifiers to adapt and learn the surrounding variations. But
single classifiers fail to reach optimality of decision making in many
situations for which Multiple Classifier System (MCS) are preferred
to enhance the ability of the system to make decisions adjusting
to finer variations. This work describes the formation of an MCS
using Multi Layer Perceptron (MLP), Recurrent Neural Network
(RNN) and Probabilistic Neural Network (PNN) with data inputs
from correlation mapping Self Organizing Map (SOM) blocks and
the output optimized by another SOM. The results show that the set-
up can be adopted for real time practical applications for prediction
of primary energy and location of EAS from density values captured
using detectors in a circular grid.
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Cosmic showers are the generators of Extensive Air Show-
ers (EAS) [1] and travels from the emission source until it
reaches the Earth. During its passage through space, there
are interactions with the intergalactic or interstellar medium
for which sub-products of the original cosmic particles are
produced. When these particles enter the Earth they have
extremely high energy and produce complicated processes due
to the interactions with atmospheric nuclei. As a result, certain
secondary particles are generated which are called Extensive
Air Shower or EAS [2]. The study of these EAS involves
the measurement of the position, size, primary energy, time
extent of the events and other factors. Detection and analysis of
High Energy Particle Showers involve a plethora of theoretical
and experimental works comprising of complex measurement
and detection equipments. There are several constraints re-
lated to experimental works involving the showers some of
which are due to partial knowledge regarding interactions
of shower particles and primary energies [2]. As a result,
inaccuracies become a part of measurements of EAS position,
size, primary energy, time extent of the events etc. These
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Fig. 1. Depiction of Extensive Air Shower generation

difficulties make the analysis of showers a tedious work and
requires constant support from expensive experimental set-ups
which is a limitation for visualization, conceptualization and
monitoring of EAS events. Therefore, there exist a necessity to
develop a readily available system based on soft-computational
approaches which can be used to predict primary energy and
locations of shower events. This is due to the fact that soft
computational tools like Artificial Neural Network (ANN)s
can be trained to adapt to situations and learn the variations
taking place. This knowledge can be utilized for predicting
future events or other related aspects which can be an aid
to expand the knowledge of EAS. Also the outcomes of
experiments involving such tools can be made a part of
physical experiential apparatus to facilitate adaptive orientation
of monitoring and analysis of EAS phenomena that too in real
time.
Several works exist which have used multiple approaches to
analyze EASs and thereby develop applications suitable for
shower events. A work by D. Hanna [3] reports application
of ANNs for EAS. Another work by J C Perrett and J
T P M van Stekelenborg [4] describes the implementation
of an ANN to estimate the core position and energy of
EASs recorded by the South Pole Air Shower Experiment
(SPASE) [5]. Another work of similar nature is [7]. This
work discusses the possibilities of using ANNs for individual
EAS data evaluation. A work as cited in [6] uses ANN for
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providing a mass likelihood distribution for each measured
shower, based on its multi-parameter training with simulated
showers. Another work by A. Chilingarian . et. al [8] is based
on ANN models to recognize the experimental EAS without
known primary energy.
Application of soft computational methods to EAS analysis is
related to the configuration of tools like ANNs as classifiers.
ANN as a classifier generates a number of classification
zones demarcated by decision boundaries which determines
the clustering of input samples as per the decision rule. But
single classifiers fail to reach optimality of decision making in
many situations for which Multiple Classifier System (MCS)s
are preferred to enhance the ability of the system to make
decisions adjusting to finer variations. Such an aspect is more
relevant to the study of EAS because of the volume of
correlated data involved. This work considers the formulation
a MCS for application in high energy shower analysis with
special emphasis on prediction of EAS primary energy and
core positions. The MCS is constituted using Multi Layer
Perceptron (MLP), Recurrent Neural Network (RNN) and
Probabilistic Neural Network (PNN) with data inputs from
correlation mapping Self Organizing Map (SOM) blocks and
the output optimized by another SOM. The complete work
is related to the formation of a MCS with heterogeneous
ANNs and a Committee Machine built using MLP blocks for
prediction of primary energy and core locations of EAS from
density values provided by detectors distributed in a circular
arrangement of 100 meters. The EAS events are assumed to
be taking place inside the arc with the detectors recording the
phenomena from all the locations within the arrangement. The
requirement is to train the MCS and the Committee Machine
with density values from the detectors to enable them predict
primary energies and core locations and produce a comparative
performance measure as demonstrated by the two approaches.
Multiple Classifier System (MCS)s have become an area of
research for application in pattern recognition including human
computer interaction (HCI) due to their ability to provide im-
proved discrimination capacity compared to single classifiers.
The challenge is however becoming increasingly intense to
reach the point of perfection as dictated by the theoretical
optimality of decision making. Single classifiers, regardless of
their capability to make satisfactory recognition performance,
are limited by just one estimate of the optimal decision rule. In
this context MCSs become relevant as these enable the creation
of more than one optimal decision boundary and improve
performance.
A few works related to the use of MCS for data analysis,
pattern recognition and clustering is included here as an
indicator of the effectiveness of such approaches. A work
[9] shows that the approach using MCS is effective as well
as robust for the classification of time series data. Another
work [10] focuses on the role of Artificial Neural Network
(ANN)s in MCSs for remote sensing applications. A work
referred in [11] is related to a method of reduction of the
data set with the use of multiple classifiers. A tutorial on the
basic considerations of MCS and its applications is included
in [12]. Formation of a tree classifiers using ANNs for speech
processing is reported by [13]. Application of MCS for Arabic

work recognition is available in [14].
The description is organized as below: Section I provides a
brief account of the proposed system for prediction of priamry
energy and location of EAS using a MCS and Committee
Machine. This section has several subsections of which Sec-
tion I-A deals with MLP training. Section I-B provides an
account of the RNN block used and Section I-C describes
the considerations related to the PNN. Section I-D shows how
the Committee Machine architecture can be formulated for the
work. The experiential details are provided by Section II where
Section II-A and Section II-B include the outcomes derived
using MLP, RNN and PNN blocks separately combined by
SOM optimizer. The summary results from the two approaches
are included at the end of the section. Section III concludes
the description.

I. SYSTEM MODEL

The system consists of a conceptual arrangement of de-
tectors in a circle of radius 100 meters with density values
of the shower events considered in groups taken from each
of the four quadrants. The core positions are considered to
be placed inside the 50 meter radius. The experimental set
- up consists of a group of Self Organizing Map (SOM)s
used for data mapping / or data size reducing and three ANNs
blocks. These ANN blocks are Multi Layer Perceptron (MLP),
Recurrent Neural Network (RNN) and Probabilistic Neural
Network (PNN) structures. The MLP, RNN and PNN forms
the MCS system. The density of the detector size is taken to
be 100 per quadrant to obtain more detailed description for
the EAS but since the data shall be correlated, SOM blocks
are used to map the most relevant portion for use with the
MCS system. The complete system is depicted in Figure 2.
Let Dlri and Cri be the sets of density values and core
positions respectively captured from a detector array placed in
the circular arrangement. During the shower event a core may
be placed within the 50 meter arc during which the sensors
placed inside and outside the 50 meter circle act as detectors.
The data captured from the detectors are density values of
the showers and are applied to Self Organizing Map (SOM)
blocks. These reduce the density values to one fourth of the
applied size which is equally contributed by each of the four
quadrants of the circular arrangement.
The output of the first SOM is

y11[n] =
4∑

i=1

Dlri[n]× y1[n] (1)

where y1[.] represents the system function of the SOM. This
y11[n] represents the optimized density values contributed by
the four quadrants.
Similarly, the second SOM produces an output as given by

y21[n] =
4∑

i=1

Cri[n]× y2[n] (2)

with y2(.) representing the system function of the SOM. The
set y21[n] represents the optimized core position coordinates
distributed along the four quadrants. The processes represented
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Fig. 2. MCS formed by heterogeneous ANN blocks for EAS size and location prediction

by Eq.s 1 and 2 are akin to a mapping process where the
correlation between data sets are reduced to around 25% of
the original.
The training process of the SOM is linked with the creation
of a code-book which provides the account of finding the best
match among the set of input patterns given to it. There are
two ways in which the best matching code-book vector can be
found [15] [16]. The first way is to employ an inner product
criterion: “select the best reference vector by choosing the
neuron in the competitive layer that receives the maximum
activation”. This means that for the current input vector Xk,
all neuron activations are computed

yj = XT
k Wj j = 1, ......, m (3)

and the winning neuron index, J, satisfies

yJ = maxj{X
T
k Wj} (4)

Alternatively one might select the winner based on a Euclidean
distance measure. Here the distance is measured between the
present input Xk and the weight vectors Wj , and the winning
neuron index J, satisfies

‖Xk −WJ‖ = minj{‖Xk −Wj‖} (5)

Competitive learning requires that the weight vector of the
winning neuron be made to correlate more with the input
vector. This is done by perturbation of only the winning
weight vector WJ = (w1J , ..............., wnJ )T towards the
input vector. The scalar form of this learning law in difference
form is presented below:

wk+1
iJ = wk

iJ + ηxk
i i = 1, ........, n (6)

However, the weight can grow without bound for which some
form of normalization is required [15] [16].

wk+1
iJ = wk

iJ +η(
xk

i∑
j xk

j

−wk
iJ ) i = 1, ........, n (7)

This equation leads to total weight normalization.

W̃J(k+1) = W̃J(k) + η(1− W̃J(k)) (8)

Fig. 3. Self Organizing Feature Map

where W̃J(k) =
∑n

i=1 wk
iJ .

The output of the SOMs are applied to the three ANNs blocks
which are MLP, RNN and PNN structures. The output of these
three blocks can be given as

y31 = y11 × [ANN1]|y21 (9)

y32 = y11 × [ANN2]|y21 (10)

y33 = y11 × [ANN3]|y21 (11)

where ANN1 is and MLP, ANN2 is a RNN and ANN3 is
a PNN and are trained as per the considerations mentioned in
Sections I-A to I-C.
The final segment of the system is a SOM block used as an
optimizer of the outputs generated by the three ANNs. At a
given instant the SOM retains the best output among the three
ANNs. The selection is made by resorting to “Winner Takes
All” approach of training and an Euclidean distance based cost
function [16]. The optimization rule can be expressed as

Yout = Best of{y31, y32, y33} (12)
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Fig. 4. Multi Layer Perceptron

A. Multi Layer Perceptron (MLP) training using (error) Back
Propagation Algorithm:

A MLP (Figure 4) consists of several layers of neurons. The
equation for output in a MLP with one hidden layer is given
as:

Ox =
N∑

i=1

βig[w]i.[x] + bi (13)

where [x] is the input vector, [w] is the associated weight
vector, b is a bias value and g(.) is the activation function
and βi is the weight value between the ith hidden neuron.
The process of adjusting the weights and biases of a MLP is
known as training carried out using (error) back-propagation
algorithm. It entails a backward propagation of the error
correction through each neuron in the network. Classification
by an ANN involves training it so as to provide an optimum
decision rule for grouping all the outputs of the network such
that the training minimizes the risk functional [15] [16] :

R =
1

2N

∑
(dj − F (xj))2 (14)

where dj is the desired output pattern for the prototype vector
xj , ((.)) is the Euclidean norm of the enclosed vector and
N is the total number of samples presented to the network
in training. The decision rule therefore can be given by the
output of the network:

ykj = Fk(xj) (15)

for the jth input vector xj .
The steps involved during adaptive updating of the MLP are

as below:

1) Initialization and Samples: Let input be
pm = [pm1, pm2.....pmL], the desired output be
dm=[dm1, dm2......dmL] and W be a matrix of CxP
where P is the length of the input vector used for each
of the C classes holding random weight values for the
connectionsit links between the constituent layers of
the MLP.

• Compute the values of the hidden nodes as:

nethmj =
L∑

i=1

wh
jip

mi + ∅hj (16)

• Calculate the output from the hidden layer as

oh
mj = fh

j (nethmj) (17)

where
f(x)= 1

ex

or
f(x)= ex

−e−x

ex+e−x

depending upon the choice of the activation func-
tion.

• Calculate the values of the output node as:

oo
mk = fo

k (netomj) (18)

2) Forward Computation: Compute the errors:

ejn = djn − ojn (19)

Calculate the mean square error(MSE) as :

MSE =

∑M

j=1

∑L

n=1 e2
jn

2M
(20)

Error terms for the output layer is:

δo
mk = oo

mk(1 − oo
mk)emn (21)

Error terms for the hidden layer:

δh
mk = oh

mk(1− oh
mk)

∑
j

δo
mjw

o
jk (22)

3) Weight Update: A generalized weight update expres-
sion with a momentum term is:

wh
ji(t+1) = wh

ji(t)+ηδh
mjpi+α(wo

ji(t+1)−wji (23)

One cycle through the complete training set forms one epoch.
The above is repeated till MSE meets the performance criteria.
While repeating the above the number of epoch elapsed is
counted. A few methods used for MLP training includes:

• Gradient Descent (GDBP)
• Gradient Descent with Momentum BP (GDMBP)
• Gradient Descent with Adaptive Learning Rate BP

(GDALRBP) and
• Gradient Descent with Adaptive Learning Rate and Mo-

mentum BP (GDALMBP).

B. Recurrent Neural Network (RNN) training using Real time
Recurrent Learning:

A RNN is an ANN with one or more feedback loops. The
feedback can be of a local or global kind. The RNN maybe
considered to be an MLP having a local or global feedback in a
variety of forms. It may have feedback from the output neurons
of the MLP to the input layer. Yet another possible form of
global feedback is from the hidden neurons of the ANN to the
input layer [15] [16]. RNN learning takes place by following a
method referred to as Real-Time Recurrent Learning (RTRL).
The name is related to the fact that adjustments are made
to the synaptic weights of a fully connected RNN in real
time. It means that while the network continues to perform
its function, the training continues. Figure 5 shows the the
layout of such a RNN. The network has two distinct layers:
a concatenated input-feedback layer and a processing layer of
computation nodes. Correspondingly, the synaptic connections
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Fig. 5. Fully connected RNN

of the network are made up of feedforward and feedback
connections.

The Real Time Recurrent Learning Algorithm can be sum-
marized as follows [15] [16]:
Let

1) Λj(n) be a q − by − (q + m + 1) matrix holding the
partial derivative of the state vector x(n) with respect
to the weight vector wj ;

2) Uj(n) be a q − by − (q + m + 1) matrix with zeros
in all rows, except for the jth row that is equal to the
transpose of vector ξ(n):

Uj(n) =

⎛
⎝

0
ξT
n

0

⎞
⎠←− jth, j = 1, 2......., q (24)

3) Φ(n) be a q-by-q diagonal matrix whose kth diagonal
elements is the partial derivative of the activation func-
tion with respect to its argument, evaluated at wT

j ξ(n):

Φ(n) = diag (ϕ′(wT
1 ξ(n)), ......ϕ′(wT

j ξ(n)), ....., ϕ′(wT
q ξ(n)))

(25)

Also, let, m be the dimensionality of input space, q the
dimensionality of state space, p the dimensionality of output
space and wj be the synaptic weight vector of the neurons.
With synaptic weight w taking small random values, state
vector x(0) = 0 and Λj(0) = 0 for j = 1, 2,...q.
Compute for n = 0, 1, 2.....,

Λj(n + 1) = Φ(n)[Wa(n)Λj(n) + Uj(n)]
e(n) = d(n)− Cx(n)
Δwj(n) = ηCΛj(n)e(n)

C. Probabilistic Neural Network (PNN) training:

A PNN has three layers of nodes and can be extended to
classify any number of patterns with a probabilistic linkage.
The PNN is a Bayes Parzen classifier (Masters, 1995) and was

first introduced by Specht (1990), who showed how the Bayes
Parzen classifier could be broken up into a large number of
simple processes implemented in a MLP each of which could
be run independently in parallel [17] [18]. Because of ease of
training and a sound statistical foundation in Bayesian esti-
mation theory, PNN has become an effective tool for solving
many classification problems [19] [20] [21] [22] [23]. However
there are issues related to the size, locations of pattern layer
neurons as well as the value of the smoothing parameter of the
PNN. With size of the PNN, higher computational capability
is related. There are several solutions suggested for these
problems [24] [25] [26] [27] [28]. These methods can roughly
be considered to be unsupervised methods for PNN training. A
method using supervised approach is suggested in [29] which
is applied for pattern recognition purposes.
A PNN structure is shown in Figure 6. The input layer
contains N nodes have one value for each of the N input of a
feature vector. No computation is carried out by the input layer.
It simply distributes the input to the neurons in the pattern
layer. The responses of the hidden nodes are added into one
of K classes each of which is related to a Gaussian function.
All of the Gaussian values for Class k are summed and the
sum forms a probability density function (pdf).
If the input layer receives an input x, the neuron xij of the
pattern layer computes the output as

φij(x) =
1

(2π)
d
2 σd

exp[−
(x− xij)T (x− xij)

2σ2
] (26)

where d denotes the dimension of the pattern vector x, σ is
the smoothing parameter and xij is the neuron vector. The
summation layer neurons compute the maximum likelihood of
pattern x being classified into class Ci the response of which
can be expressed as

pi(x) =
1

(2π)
d
2 σd

1
Ni

Ni∑
j=1

exp[−
(x− xij)T (x− xij)

2σ2
] (27)

where Ni denotes the total number of samples in class Ci. The
decision layer classifies the input pattern in accordance with
the Bayess decision rule for estimated class Ĉ(x) of pattern
x as

Ĉ(x) = arg max{pi(x)}, i = 1, 2......., m (28)

D. Committee Machines using ANN:

The fundamental considerations governing the working and
parameter selection of the cooperative ANNs or committee
machines can be explained using the following analysis [16]
[30]:
Let a training set of m input - output pairs be
(x1, t1), (x2, t2), ...(xm, tm) be given and N networks are
trained using this set of data. For simplicity, let for n-
dimensional input there be a single output. Let for network
functions fi for a number of networks represented by indices
i = 1, 2, ...N , the cooperative or committee network formed
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Fig. 6. Probabilistic Neural Network

Fig. 7. ANN Committee Machines

generates as output given as

f =
1
N

N∑
i=1

fi (29)

The rationale behind the use of the averaging in the output of
the cooperative or committee network as given by Eq. 29 is
the fact that if one of the constituent networks in the ensemble
is biased to some part of the input samples, the ensemble
average can scale down the prediction error considerably [30].
A quadratic error function can be computed from each of the
error vectors ei using the ensemble function f as

Q =
m∑

i=1

[ti −
1
N

N∑
i=1

fi]2 (30)

By simplifying the quadratic error function, optimal weight
set can be calculated as

w =
1(EET )−1

1(EET )−11T
(31)

assuming that the denominator does not vanish. This method,
however, is dependent on the constraint that EET is not ill-
conditioned.

TABLE I
IMPROVEMENT OF MCS PERFORMANCE DUE TO THE USE OF SOM DATA

MAPPING BLOCKS AT THE INPUT

Case Epochs Time Success in Difference Difference in
in Sec.s Rate in % in time in sec.s success rate in %

Without 5000 89.3 92.1 - -
SOM at 10000 108.1 93.2 - -

Input 15000 134.5 93.2 - -
With 5000 72.3 93.1 19.0 1.1

SOM at 10000 93.1 95.1 13.9 2.03
Input 15000 112.3 95.1 16.5 2.03

II. EXPERIMENTAL DETAILS AND RESULTS

Experiments are carried out using density values taken from
detector readings spread around a radius of 100 meters. The
cores are assumed to be concentrated in an arc of 50 meter
radius thus providing a set-up for derivation of density values
using the NKG function [3]. These values are related to shower
size, primary energy and the coordinates of the location where
the event is assumed to have occurred.
The SOM data mappers at the input perform a process through
which only 25% of the samples supplied by the detectors are
retained. These are data values which are least correlated and
can be considered to be provided by 100 detectors spread in
a circular arc. In the true sense, the actual training data size
comes from about 400 detectors which have high correlation.
The highly correlated data can lead to inefficiency, hence the
four SOM data mappers are used which reduce the size of the
input samples. The presence of the four SOM data mappers
helps in improving efficiency of the system as depicted by
Table I. Experiments are carried out in several phases. The first
phase deals with the training of each of the ANNs forming
the MCS. The next phase is related to the optimization by
the SOM of the results provided by the MLP, RNN and the
PNN. The subsequent stage is to train the Committee Machine
architecture formed by ten MLP blocks. The results derived
are compared and χ2 - distributions generated for the success
rates for the prediction of primary energy and core location
with increasing epochs. The experimental stages are explained
below and the results depicted in the following sections.

A. Configuring and training Multi Layer Perceptron for Pre-
diction of Primary Energy and Core Location:

The application of the MLP considers two aspects. First is
the choice of the hidden layer and second is the combination of
activation functions. A MLP is constituted with one hidden and
one each of input and output layers. Trial and error method
is used to find the best suitable hidden layer configuration.
For this case several sizes of the hidden layer lengths have
been considered. Table II shows the performance obtained
during training by varying the size of the hidden layer. Two
and three hidden layer MLPs are also tested but these provide
no superior performance at the cost of higher computational
complexity which was observed during the experiment. The
case where the size of the hidden layer taken to be 1.5 times to
that of the input layer is found to be computationally efficient.
Its MSE convergence rate and learning ability is found to be
superior to the rest of the cases. Hence, the size of the hidden
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TABLE II
PERFORMANCE VARIATION AFTER 2500 EPOCHS DURING TRAINING OF A

MLP WITH VARIATION OF SIZE OF THE HIDDEN LAYER

Case Size of hidden MSE Precision
layer (x input layer) Attained attained in %

1 0.75 1.2 x 10−3 87.1
2 1.0 0.56 x 10−3 87.8
3 1.25 0.8 x 10−4 87.1
4 1.5 0.3 x 10−4 90.1
5 1.75 0.6 x 10−4 89.2
6 2 0.7 x 10−4 89.8

TABLE III
EFFECT ON AVERAGE MSE CONVERGENCE AFTER 2500 EPOCHS WITH

VARIATION OF ACTIVATION FUNCTIONS AT INPUT, HIDDEN AND OUTPUT

LAYERS

Case Input Hidden Output MSE x
layer Layer Layer 10−4

1 log-sigmoid log-sigmoid log-sigmoid 1.45
2 tan-sigmoid tan-sigmoid tan-sigmoid 1.32
3 tan-sigmoid log-sigmoid tan-sigmoid 1.05
4 log-sigmoid tan-sigmoid log-sigmoid 1.02
5 log-sigmoid log-sigmoid tan-sigmoid 1.15
6 log-sigmoid tan-sigmoid log-sigmoid 1.19

layer of the ANNs considered is 1.5 times to that of the input
layer.
The selection of the activation functions of the input, hidden
and output layers plays an important part in the performance
of the system. A common practice can be to use a similar type
of activation function in all layers. But certain combinations
and alterations of activation function types carried out during
training provide a way to attain better performance. Two
types of MLP configurations are considered- the first type
constituted by a set of similar activation functions in all
layers and the other with a varied combination of activation
functions in different layers. Both these two configurations
are trained with gradient descend with variable learning rate
and momentum back propagation (GDMALBP) algorithm as a
measure of training performance standardization. The outcome
of the MLP blocks vary depending upon the number of
training sessions and the data used. Mean Square Error (MSE)
convergence and prediction precision are used to ascertain the
performance of the MLP blocks. Samples used for training
includes data samples of density values with several types of
noise between -3 to 30 dB.
Experimental results to determine the best training method of
the MLP is based on the results shown in Table IV. From
the Table IV it is seen that a three layered MLP trained with
traingdm provides the best success rate within 12000 epochs.
This set-up is taken as the MLP block forming the MCS and
Committee Machines for prediction of primary energy and
core location. The MLP block receives density values from 80
to 100 detectors with particle content between 1010.5 to 1020.5

eV with Moliere radius of 70 m. The cores are considered to
be evenly distributed within a circle of radius 50 m centered
on the middle of the array. This restriction is adopted to avoid
edge effect.

TABLE IV
RESULTS DERIVED DURING TRAINING- ANN TRAINED WITH traingd,

traingdm, traingdx AND traingda

SL Num Epochs Success rate Time
in % in sec.s

5000 93.8 25.6
traingd 10000 92.2 35.6

15000 93.9 68.3
20000 94.1 200.5
5000 93.13 25.1

traingdm 10000 93.9 36.8
15000 93.4 69.1
20000 94.1 201.8
5000 92.8 26.6

traingdx 10000 92.2 38.6
15000 93.9 68.5
20000 94.4 207.1
5000 93.1 24.6

traingda 10000 88.9 35.8
15000 93.5 74.5
20000 89.1 209.6

TABLE V
VARIATION OF THE AVERAGE TRAINING TIME OF A RNN

Sl Num Epoch Time is Success rate
sec.s in %

1 5000 22.2 93.4
2 10000 33.1 94.9
3 15000 55.3 94.9
4 20000 124.2 94.7

B. RNN and PNN Configuration and Training:

The RNNs are faster but take different times to reach the
desired goal. The average time taken by the RNNs to train upto
2000 epochs is shown in Table V. The RNNs formed with
one hidden layer containing a mix of tan-sigmoid and log-
sigmoid activation functions are trained with RTRL algorithm
with Levenberg-Marquardt optimization. The RNN is designed
to accept density values from 80 to 100 detectors for 20 shower
events.
A PNN can be considered to be combination of Radial
Basis Function (RBF) ANN and a SOM [16]. RBS-ANNs
are approximating functions and can be used in combination
of a SOM to create a PNN. With density values from 80
to 100 detectors the PNN block provides greater accuracy
at less training session than MLP and the RNN. After the
MLP, RNN and PNN blocks are ready, the MCS is set-up
and the prediction performed using density values from 80
to 100 detectors. The SOM at on given instant receives three
inputs from the three ANN blocks and produces the optimized
output. The process is repeated for density values obtained
from all the detectors for 20 shower events. The SOM, on an
average, is found to provide better results between 1500 to

TABLE VI
VARIATION OF THE AVERAGE TRAINING TIME OF A PNN

Sl Num Epoch Time is Success rate
sec.s in %

1 5000 20.1 93.6
2 10000 24.2 95.1
3 15000 47.1 95.2
4 20000 69.4 95.1
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Fig. 8. Effect of the SOM optimization block

Fig. 9. Expected versus ANN generated results after 20000 epochs

8500 training sessions. The effect of the SOM optimization
block can be summarized for average results recorded for
primary energy prediction and location detection as shown by
Figure 8. Without the use of the MCS block, the trained MLP
can be used to provide a prediction of the shower sizes for
density values from 80 to 100 detectors. The results derived
by the trained ANN after training it for about 20000 epochs
is depicted in Figure 9. Experiments are repeated with the
trained predictor block having density samples with variations
upto 50% . A correlation plot for predicted primary energies
between ideal and corrupted input samples (upto ±50%) is
generated which is shown in Figure 10. Similarly a plot of
correlation of predicted core locations for ideal and corrupted
input samples (upto ±50%) is obtained as shown in Figure 11.

Figure 12 shows the location of shower events as predicted
by the ANN blocks with detector positions and core positions
shown. The plot is for one event of which the density values
are fed to the trained ANN set-up. After training with fifty
sets of data the plotted values are generated as the average of
twenty sets of inputs of which half are with noise variation
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Fig. 10. Correlation plot of predicted primary energy values with variation
of ±50% with ideal input
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Fig. 11. Correlation plot of predicted core locations with sample variation
of ±50% with ideal input

in the mentioned range. The results show a success rate of
around 95%. The above is repeated for another event and a
similar success rate is obtained.
With the committee machines, a set of experiments are carried
out to predict the shower positions. Each of the twenty units of
the ANN cluster is formed by cascade feed-forward networks
- a variation of the MLP trained with back-propagation. The
average data size for each of the block is fifty sets of 20×100
where 20 represents the number of shower cores and 100
denotes the density values recorded by the detectors. Noise
between -3 dB and 3 dB are mixed to make the ANN cluster
robust enough to deal with variations found from experiential
works. Initially as the training is limited to a few thousand
session, the event cluster is spread randomly inside and outside
the fifty meter radius. It reflects the inability of the ANN
cluster to make appropriate classification due to insufficient
training. The expected results are a grouping inside the fifty
meter arc.
As training sessions are increased with more number of sam-
ples, the predicted results start to cluster inside the intended
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Fig. 12. Location of shower events with detector and core positions generated
by the ANN set-up for one event

circle. This means that with increasing number of sessions
the ANN cluster learns the given patterns more efficiently
and develops the ability to make proper adjustments and
predictions with a marked increase in the success rates. The
consequence is better clustering of the detector and core
positions as required both inside and outside the 50 meter
arc. The shower events are assumed to be taking place inside
the 50 meter circle with detectors recording the events from
positions inside and outside the 50 meter arc. Figure 13
show a grouping generated by the ANN - cluster after 5000
sessions of training. The grouping clearly shows the location of
shower events generated using density values placed inside the
circle. A better clustering of the events recorded after 10,000
iterations is shown by Figure 14. The number of training
sessions have been extended to 20,000 also but the best results
are obtained around the 10,000 to 12,000 mark. Hence, testing
results are derived from the ANN cluster trained upto this
limit. The results derived for core size prediction and location
detection performed by the MCS and the committee machine
blocks can be summarized by the Figure 15. The advantage
of the MCS system for prediction of primary energy and
core location is obvious though the Committee Machines also
provide satisfactory performance.

III. CONCLUSION

The work shows the use of MCS and Committee Machines
for a combined prediction of primary energy and core location
of EAS. MCS with heterogeneous ANN blocks have proved
to be effective for such applications. Committee Machines are
also useful but the former proves to be superior at the cost of
greater computational and implementation complexity.
Since the data involved is considerable, therefore effective
means of reducing the size of the input samples with lower cor-
relation is one of the considerations which needs to be looked
into while configuring such systems. The work provides an
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Fig. 13. Shower events of four cases predicted by ANN after 5000 sessions
taking density values from 100 detectors
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Fig. 14. Shower events of four cases predicted by ANN after 10000 sessions
taking density values from 100 detectors

insight into that aspect also and shows how SOM blocks can
be used to reduce size of the input data. MLP, RNN and
PNN blocks are ANN architectures with individual uniqueness
which provides a heterogeneous cooperative environment for
MCS training and testing for EAS related analysis. MLPs are
simple and reliable non-parametric prediction tools suitable for
pattern matching and prediction application which for primary
energy prediction and core location determination proves to
be effective. Its relatively slow speed is supplemented by the
RNN which can even track time varying properties of the
EAS events for which the proposed MCS can be modified for
real time applications. The PNN strengthens and reinforces
the decision making capacity of the MCS due to its ability
to provide better success rate using its statistical foundations
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Fig. 15. Average χ2 - distribution for core size prediction and location
detection performed by the MCS and the committee machine blocks

based on Bayesian estimation principles.
The ability and efficiency of the MCS is further enhanced by
the use of the SOM optimization block at the output. The
result is a system suitable for applications for primary energy
and core location detection proving to be effective for large
scale applications and demonstrating superior performance
capacity than Committee Machines formed by homogeneous
ANN blocks.
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