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Abstract—An adaptive neural network controller  for
autonomous underwater vehicles (AUVS) is presented in this paper.
The AUV modsd is highly nonlinear because of many factors, such as
hydrodynamic drag, damping, and lift forces, Coriolis and centripetal
forces, gravity and buoyancy forces, as well as forces from thruster.
In this regards, a nonlinear neural network is used to approximate the
nonlinear uncertainties of AUV dynamics, thusovercoming some
limitations of conventional controllersand ensure good performance.
The uniform ultimate boundedness of AUV tracking errors and the
stability of the proposed control system are guaranteed based on
Lyapunov theory. Numerical simulation studies for motion control of
an AUV are performed to demonstrate the effectiveness of the
proposed controller.

Keywords—Autonomous Underwater Vehicle (AUV), Neura
Network Controller, Composite Adaptation.

l. INTRODUCTION

N the last 3 decades, autonomous underwater vehicle

(AUV) has become a research topic in the field of robotics
because of the commercia and military potential and the
technologica challenge in developing them [1], [2]. Because
of the non-linearity and the unpredictable operating
environment of the AUV, many design parameters must be
considered during the design of AUV control system. Indeed,
the high frequency oscillating movement can serioudy affect
on the performance of sensors, especialy optica and
acoustical sensors.

In brief, the main factors that make the control of AUVs
difficult are: (1) the highly nonlinear, time-varying dynamic
behavior of the AUVs; (2) uncertainties in hydrodynamic
coefficients; (3) disturbances by ocean currents [3]. To remedy
these aforementioned problems and enhance the AUV
performance along with strengthen robustness, adaptability
and autonomy; it is necessary that the motion control system
has the ability of learning and self-adaptation.
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Several control approaches have been applied, such as
sliding control [4, 5], nonlinear control [6], adaptive control
[7], and fuzzy contral [8, 9].

The capability of neural networks for function
approximation, classification, and their ability to deal with
uncertainties and parameter variations [10, 11] make them a
valuable choice for use in control of the AUVs. Xiao et al.
[12] proposed a novel motion controller based on pardlel
neural network for the

AUV, which can enhance the training speed of neura
network. It is shown that paralel neura network can be
utilized for the establishment of highly reliable and robust

control systems for the AUV. In [13], a neural network
adaptive controller with a linearly parameterized neurd
network (LPNN) is introduced to approximate the nonlinear
uncertainties of AUV dynamics. In this approach, the basis
function vector of LPNN is built according to the physical
properties of the AUV. Moreover, a sliding mode control
structure is used to remedy the effects of network
reconstruction errors and disturbances in AUV dynamics. The
method in [14] developed a fuzzy neural network controller
with a novel immune particle swarm optimization (1PSO)
algorithm based on immune theory and nonlinear decreasing
inertia weight (NDIW) strategy to adapt the controller
parameters. According to the restraint factor and NDIW
strategy, 1PSO agorithm can effectively prevents premature
convergence and keeps baance between globa and local
searching ability.

In this paper, a novel control structure, with composite
adaptation low, for autonomous underwater vehicles (AUVS)
is proposed. In this regard, a stable adaptive controller is
developed to approximate unknown nonlinear functions in the
AUV dynamics, hence overcoming some limitation of
conventional controllers such as PID/PD controller and
improve AUV tracking performance. This controller can
easily regject disturbance and robust to dynamic exchange in
AUV dynamics during movement in unpredictable operating
environment.

The rest of this paper organized as follows. Section II
describes the uncertain nonlinear model of the AUV's
dynamic. In Section IIT we describe the structure of stable
adaptive controller with composite adaptation low. In Section
IV shows the simulation results. And finally, Section V draws
conclusions and sum up the whole paper.

II. AUV DYNAMIC MODEL

The dynamic model of an AUV isintroduced in this section.
This AUV moded is useful for both formulating control

866 1SN1:0000000091950263



Open Science Index, Electrical and Computer Engineering VVol:6, No:7, 2012 publications.waset.org/6416/pdf

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering
Vol:6, No:7, 2012

algorithms and simulations. The AUV dynamic modkefich  where f, and f. are the buoyant force vector and the

presented in this section, is based on the underwabotic . . .
models proposed by Fossen [15] and Yuh [16] gravitational force vector, respectively. Moreovey,is the

The dynamic model, which is derived from the Newtoncentre of buoyancy ang. is the centre of gravity or mass in
Euler motion equation, is given by, frame {B}.

MV+ C(V)V+ D(WV+G =T (1) E. Forces and Torque Vector
The external force and torque vector produced by th

where M is a mass and inertia matriceB(v)is a Coriolis thrusters can be expressed as,
and centripetal terms matrice)(v) is a hydrodynamic
damping matrices,G is the gravitational and buoyancy

vector, 7 is the external force and torque input vector, 8nd \yhere L is a mapping matrices atdl is a thrust vectot is

is the velocity state vector. Note that in equati®), the vector of thrusts produced by the vehicle’sisters,
environmental forces do not take into account.

r=LU (6)

Tl
A.  Mass and Inertia Matrices U= T.Z (7
M OO °® consists of both a rigid body mass and inertia,
M s 00%°, and a hydrodynamic added mahs, 00>, n
given by, The number of thrust values W is related to the number
of thrusters on the vehicle. The mapping matricess
M=M..+M ) essentially a 6 x n matrices that ugésto find the overall
RB A forces and moments acting on the vehicle.
B.  Coriolis and Centripetal Matrices Ill.  NEURAL NETWORK CONTROL STRUCTURE
C(v)OO%®, like the mass matrices consists of two The AUV dynamic in (1) can be rewritten as
matrices, Crg (V) 10 and C,(v)O0%®, which can be Mg +C(Q)a+D(Qg+G+ry =7 (®)
expressed as, where M , C(v), D(v) and G are introduced in pervious

CV) = Cre(V) +Ca(V) 3) section. Moreoverqis the configuration and, represents

CRB(V) is the rigid body Coriolis and centripetal matricesenwronmental forces and/or disturbances. To mhkeAUV

induced byM ., while C,(v) is a Coriolis-like matrices follow a prescribed desired trajectofy; (t) , we defihe t

induced byM , . tracking errore(t) and filtered tracking erro(t) by

C.  Hydrodynamic Damping Matrices e=q,-g, r=eé+Ae (9)
The hydrodynamic damping matrices representsitag and
lift forces acting on a moving underwater vehicle

Nevertheless, for a low-speed underwater vehidie, lift
forces are negligible when compared to the dragefrThese
drag forces can be separated into two differentger
composed of a linear and quadratic term [17], givgn

with A >0 a positive definite design parameter matrices
The AUV dynamics are expressed in terms of theréid error

Mr=-Cr+ f(x)+71,-T (10)
where the unknown nonlinear function of AUV dynanic
D(v) = diag{ D, + DoV} (4) 9ivenby

fO) =M (a)(dy +Aé) +
C(a)(as +Ne) +D(9)q+G
One may definx =[e",&",q;,q],¢;]" -A general sort of
approximation- based controller is based on

where D, 00%® is the linear damping term, while (11)
D, 00® is the quadratic damping term.
D. Gravitational and Buoyancy Vector

The gravitational and buoyancy vectoGOO% , is

defined as r=f+ Kyr—oul(t) (12)
_ fo + f. ) with f an estimate off(x) K, =K e&+K Aean outer
- rg X fg +1o % fg PD tracking loop, andy(t) an auxiliary signal to maint

robustness in the face of environmental forcesudances
and modeling error [10]. The multi-loop control wtture
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implied by this structure is shown in fig. 2. Emyiltg this unknown and may even be non-unique. Assume they are

controller, the closed-loop error dynamics are constant and bounded so that
_ W < W, (18)
M =—Cr - K+t L +_U(t) o (13)  with W, known and||_ the Frobenius norm.
where the function approximation error is defined a ) F o
Fof_f (14) Then, an estimate off (X) is given by

f(x) =WT@X) (19)

According to the universal approximation properfyNN, if  \ith \W the actual values of the NN weights given g t
the ¢(.) provides a basis, then a smooth functibfx) fromining algorithm to be specified. Select the cdritrput

O"to O™ can be approximated on a compact Set [BF 7=WTgA(x) + K,r-u (20)
, by . -
The proposed NN control structure is shown in figiBere
f() =WTg(x) +¢& (A3) | _ (AT 41T a=[aT aT1m
q=[q q'] e=[e'e] .
for some ideal weights and threshoMé  and some auoib 4
hidden layer neurorls .In fact, for any choice ofasiiive Jui
number€,, , one can find a feed forward NN such that NN
EREN (16) [ O s L
forall X in S [10]. n-[] ‘
The One—layer functional-link neural network (FLNN) Conet| |
structure is shown in fig. 1. Tem | V0

Fig. 2 NN controller structure

It is now necessary to show how to tune the NN tsiyfV/
on-line to ensure stable tracking. The tuning atgor found

will presumably modify the actual weight&/ so thiaey

become close to ideal weighté , which are unknovar. F
this purpose, define the weight deviations or weggtimation
error as
W=W-W
hidden layer
Fig. 1 One —layer functional-link neural net (21)

Then, f - f =W'¢g(x) +&-W'¢(x) and the close loop
It has been shown that the sigmoid can formsashset. In filtered error dynamics (13) becomes
Sanner and Slotine [18] it was shown that rediasida
functions can form a basis. Determining the nundéridden My = —(C +K,)r +WT¢(X) +(e+1,)+U (22)
layer neuron required for good approximation in @pen Now we give a FLNN weight-tuning algorithm with
problem for gehera! fully connected two-layer NNVYE want composite adaptation low that guarantee the trgcktability
a good approximation fof (X) , the number of hidden fayeyt the closed loop system. It is required to dertrans that the

neuron should be large enough. Extracting the NNgRte tracking errorr(t) is suitably small and that the FLNN
tuning algorithm, some assumptions and lemmas eeeled.

These assumptions are true in every practicaltiua weights W remain bounded, for then the contrdlt) is
_ _ _ _ bounded. The resulting controller is given in belth&orem.

Assumption 1The desired trajectory is bounded so that In this case, the tracking error does not go t® zeith time,

gq (t) but is bounded by a small enough value.

99 OI[< 17

?d( )|<ds (7) Theorem

Ga (1) Let the desired trajectoryy,(t) be bounded by as in
with (g a known scalar bound. Assuptionl.Assume the ideal target NN weights amended

by W, as in (18) and the initial tracking errar(0) is
Suppose that a FLNN is used to approximate theimeenl bounded. Let the estimate error boynd  and therbmtce

functions of the AUV model (11) according to (1&)ith W

X s . ; . bound d be constants. Let the control input for the AUV
the ideal approximating weights. The ideal weiglate

model with v =0 be given by
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r:VVT¢(x)+KUr (23) ||r|| <b, is contained i, , so that approximation property
with gain satisfying holds throughout. This demonstrates the UUB of Lﬂothand
(K, )>M (24) ”\/T/HF As a result, the AUV tracking errdi(t)is bounded

mm
b
r and continuity of all functions shows as well thmubdedness

Let NN weight tuning be given by of (t). Boundedness of (t) guarantees the boundedness of

W =For’ _KF§0T€NV (25) €(t) andé&(t), therefore boundedness of desired trajectory in

with any constant matrices =F* >0 amrd>0 a small scalékUV dynamic showsand ¢ are bounded. MoreoveYV is
design parameter. Then the filtered tracking er(dyand NN bounded and therefold/ and f are bounded.

weight estimatesW  areUUB  with practical bounds. Note that NN control with composite adaptive low
Moreover, the tracking error may be kept as snsatlesired by - = _ 2 .
guarantees prediction errorf(= f — f ) and tracking error

increasing the gai, (r(t)) are bounded, while direct adaptive or NN controly

Proof guarantees that of the tracking error. This is beeahe fact
Let the NN approximation property (15) hold for thethat NN composite adaptation low explicitly payeation to
both tracking and prediction error.

function f(x) given in (11) with a given accuragy, for all  This NN controller has no preliminary off-line |edmg
phase. The weights can simply initiated at zera@aBse of the
PD controllers in (23) the closed loop system rematable
until the neural networks began to learn. The wisigie tuned
online in real time as the system tracks the dedirgjectory.
.Defines, ={r [|r|<b,} andr (0) O S, . As the NN learng (x) , the tracking performance improves.

X in the compact ses = {x| HXH <b,} with b, > q,

Select the Lyapunov function candidate IV. SMULATION

The simulation results obtained from the implemeéaitaof
1 . 1 - 26 presented NN tracking controller on a low-speed Atufrmed
L= Tl Mr + Etf{W F~wW} (26) the Mako[19], which have high symmetry, modularigd
stability. The NN controller parameters chosen fbe
simulation were as follows,

F =100% 1,4, = 04K, = 40xdiag (81151108)
A=5xdig (250515555)

Differentiating yields
L=r"Mr + %rTM'r + %tr{VVTF Wy (27)

Substituting from (25) yields The response of the simulated controller fordimeelocities
u, v and w represent the surge, sway and heavedai@sgly;
are shown in fig.3. The angular velocities rolkcpi and yaw
about the X, y and z-axes respectively, are shoviig 4.

L=yt Kr+2 T(M -2C)r+ (28)
r{WT(FW +¢r'}+r"(e+7,)

The skew symmetry property makes the second term ze
Using tuning rule (25) yields

L=—r"K,r —kt{W @' @} +1" (e +7,) (29)

Now,
~Tin (KM |1 (e +dg) K Ur{WT$T pN} (30)

with g,_. (K,) the minimum singular value df,. Since

(¢, +d,) is positive constant, <0 if
] > En 706 <
O-m|n(K )

Thus, L is negative outside a compact set. Seledting
gain according to (24) ensure that the compactisthed by

=b, (31)
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