
 

 

  
    Abstract—This paper presents the use of Legendre pseudospectral 
method for the optimization of finite-thrust orbital transfer for 
spacecrafts. In order to get an accurate solution, the System’s 
dynamics equations were normalized through a dimensionless method. 
The Legendre pseudospectral method is based on interpolating 
functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This 
is used to transform the optimal control problem into a constrained 
parameter optimization problem. The developed novel optimization 
algorithm can be used to solve similar optimization problems of 
spacecraft finite-thrust orbital transfer. The results of a numerical 
simulation verified the validity of the proposed optimization method. 
The simulation results reveal that pseudospectral optimization method 
is a promising method for real-time trajectory optimization and 
provides good accuracy and fast convergence.  
 
   Keywords—Finite-thrust, Orbital transfer, Legendre 
pseudospectral method 

I. INTRODUCTION 

INITE-thrust propulsion is now widely used in space 
missions, such as lunar or mars descent, interplanetary 

transfer, spacecraft rendezvous, etc. The finite-thrust optimal 
control problem is qualitatively different from the impulsive 
case as there are now no integrable arcs and the control itself, 
must be modeled and determined. Optimizing finite thrust 
trajectory is a challenging problem due to the existence of long 
powered arcs [1].  

Optimal control problems are generally nonlinear and 
therefore, do not have analytic solutions (e.g., like the 
linear-quadratic optimal control problem). As a result, it is 
necessary to employ numerical methods to solve optimal 
control problems [2]. Numerical solutions for Finite-thrust 
trajectory optimal control are broadly obtained by using Direct 
and Indirect optimization methods. In an indirect method, the 
calculus of variations (Pontryagin's minimum principle) is 
employed to obtain the first-order optimality conditions. 
Subsequently, these conditions result in a two-point (or a multi 
point, in the case of a complex problem) boundary-value 
problem. This boundary-value problem has a special structure 
because it arises from taking the derivative of 
a Hamiltonian.  The same is termed as Hamiltonian Boundary 
Value Problem (HBVP) which is then solved to determine 
candidate optimal trajectories also called Extremal 
Trajectories.  
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However, the main disadvantage of indirect methods is that 

HBVPs are hyper sensitive and is often extremely difficult to 
solve (particularly for problems that span large time intervals or 
problems with interior point constraints) and hence not suited to 
obtain an extremal trajectory. The approach that has risen to 
prominence in numerical optimal control over the past two 
decades is that of so called direct methods. In a direct method, 
the state and/or control are approximated using an appropriate 
function approximation (e.g., polynomial approximation or 
piecewise constant parameterization) [2]. Direct optimization 
method can transform the optimal control problem into a 
nonlinear planning problem [3].  

 
An optimal control problem solution requires the 

approximation of following three types of mathematical 
objects: 
1)  The integration in the cost function 
2)    The differential equation of the control system 
3)    The state-control constraints 
 

An ideal approximation method should be efficient for all of 
the above approximation tasks. These requirements make 
pseudospectral methods ideal because they are efficient for the 
approximation of all three mathematical objects [4], [5] & 
[6].Recently in Pseudospectral optimal 
control, Legendre and Ch-ebyshev polynomials are most 
commonly used. Mathematically, quadrature nodes are able to 
achieve high accuracy with less number of points whereas 
the interpolating polynomial of any smooth function at LGL 
nodes converges in 2L  sense at the so-called spectral rate, i.e., 
faster than any polynomial rate [5]. 

In short, Legendre pseudospectral method, comparing with 
other collocation methods, has the advantage of fast 
convergence rate, high accuracy and insensitive in prediction of 
the initial value. Therefore, we have used pseudospectral 
Legendre method to solve the finite-thrust orbit transfer 
optimization control problem. 

II. OPTIMAL CONTROL PROBLEM STATEMENT 
Finite thrust model is considered here in the geocentric 

equatorial inertial coordinates, which establishes a spacecraft 
orbital transfer model. The problem is defined as follows: 

A. Dynamics Equations 
System’s Dynamics equations for the given optimal control 

problem are given below: 
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Where , , , , ,x y zx y z v v v  are the positions and velocity vectors 

of the spacecraft respectively. 
r  is the geocentric distance of the spacecraft, 
F  is the thrust, 
θ   is the azimuth angle , 
ψ  is the angle of site. 
m  is the mass of spacecraft. 

ev  is the engine fuel injection speed 
In order to improve the accuracy of system's dynamics 

variables and to calculate the convergence rate, we have 
introduced the following reference variables: 

 
1)     Reference distance  

d eU R= ,
eR is radius of the Earth; 

2)   Reference time 
0t eU R g=  

where,  is gravitational 

acceleration on the Earth surface ( 29.81m s ); 
3)    The reference speed is 

v 0eU R g=  and  reference mass is 

initial mass of the spacecraft :
m 0U m= ; 

4)    The reference gravitational acceleration is 2
g eU Rμ=  , 

where μ  is gravity constant of the Earth.  
 
The dimensionless equations of motion can be written as 

follow: 
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Where; 

m g/G F U U=  

B. The selection of performance indicator 
The aim of optimal trajectory design is to minimize the 

amount of fuel required to perform a free end-time descent 
from the given initial state to the given terminal state. The 
performance indicator J can be expressed as: 

              

C. Constraints 
The Following constraints are to be taken into account: 

 
1) Control constrains  
 

               

 
2) Boundary constrains:  
 

The boundary constraints are also descritized at the LGL 
points as  

0 f 0 f( ( ), ( ), , ) 0e t t t t =x x   

III. LEGENDRE PSEUDOSPECTRAL METHODOLOGY 

Let be the Legendre polynomial of degree N on the 
interval [-1, 1]. Let   be the LGL points 

given by for the range1 1m N≤ ≤ − , whereas mt
are the zeros of the derivative of the Legendre polynomial  

 . We use the following transformation to express the 

problem for t from 0 f[ , ]τ τ  to [-1, 1] 
 

f 0 f 0 f 0( ) 2 ( ) ( ) ( )t tτ τ τ τ τ τ τ= − − + −      
 

For approximating the continuous equations, we seek a 
polynomial approximation of the form: 

 
N

N

0

( ) ( ) ( )m m
m

X t X t tφ
=

= ∑                      (3) 

N
N

0

( ) ( ) ( )m m
m

U t U t tφ
=

= ∑                   (4) 

 
Where m= 0, 1, 2……N, and 
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are the Lagrange polynomials of order N . It can be shown that: 
 

1
( )

0m j

m j
t

m j
φ

=⎧
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                (6) 

 
From this property of mφ  it follows that 
 

N
m m( ) ( )X t X t=                         (7) 

N
m m( ) ( )U t U t=                         (8) 

 
Generally the approximations are expressed as: 

 

0g

f( )J m t= −

/ 2 / 2π ψ π
π θ π

− ≤ ≤
− ≤ ≤

N ( )L t

m ( 1, 2,3,..., 1)t m N= −

0 N1, 1t t= − =

N ( )L t&
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N ( ) ( )X t X t≈                                     (9) 
N ( ) ( )U t U t≈                          (10) 

 
To express the derivative N ( )X t&  in terms of N ( )X t  at the 

discrete points mt , we differentiate (9) which results in a matrix 
multiplication of the following form: 
 

N
m m l

0
( ) ( )

N

l
l

X t D X t×
=

= ∑&                (11) 

 
Where m l( )D D ×= are entries of the ( 1) ( 1)N N+ × +

differentiation matrix D  
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Re-writing (9)-(10) in the following form: 
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          (13) 

 
For the derivative of the state vector N ( )X t , collocated at the 

points mt , we re-write（11）as 

0
( )

N
N

k m ml l
m

c X t D a
=

≈ = ∑&              (14) 

 
Then the differential equation is approximated by the 

following nonlinear algebraic inequalities: 
 

f 0

0

(
( , )

2

N
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m
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δ
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−
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Where; 0δ > is a small number which represents accuracy 
range. 
 
Hence the new boundary conditions are: 

N
0

N
f

( 1)

(1)

− =

=

x x

x x
                   (16) 

 
Orbital condition is: 

 

N N
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≤

=
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Finally, the cost function is approximated by the 

Gauss-Lobatto integration rule: 
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Where; 
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k
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Finally, the optimal control problem is approximated by the 

discretized optimization problem by finding a= [a0, a1…aN] & 
b=[b1,b2,……bN] to minimize the cost function (18) in 
accordance with the constraints of equations(15), (16) and (17). 

IV. SIMULATION AND RESULTS ANALYSIS  
The constraints are dealt with nonlinear programming 

multiplier method, and the combined DFP method is used to 
solve the optimization problem after the conversion. The 
simulation parameters are a coplanar orbital rendezvous 
problem with given initial point and end point. The initial and 
final orbit parameters are given below: 
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The constraints of thrust direction angle are set as follows： 

 
2 2π π

π θ π
− ≤ Ψ ≤
− ≤ ≤

 

 
The values of the other parameters used in this scenario are 

summarized here: 
 

0

3 2
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e
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Orbital boundary conditions: The values of state variables 

and initial and terminal constraints are shown in Table I.   
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The optimized performance of spacecraft orbit transfer is 
selected as the minimum fuel consumption during the entire 
process: f( )J m t= −  

LGL points taken are N=25. Orbit transfer time and the loss 
of mass recorded is 1766.5 sec & 576.9 Kg respectively. 

Following Table I demonstrate the terminal constraint 
satisfaction 
 

 
Results depicted in Table I and Fig. 1 & 2 shows that the 

optimized orbit changes smoothly with considerably fast 
convergence rate compared with the value of terminal 
constraints with high accuracy. Moreover, the results show that 
the spacecraft can be accurately transferred to the target from 
the initial orbit. The control curve of the Orbit transfer process 
is shown in Fig. 4. The azimuth angle and the angle of site 
changes smoothly, and appropriately meeting the constraints. 
Therefore, the entire flight transfer orbit is under control. In 
addition, the simulation of the initial parameters selected is 
relatively free which results that the pseudospectral method is 
not sensitive to the initial guess and having good robustness. 

 

 

 
Fig. 2 The change curve of velocity 

 

 
Fig. 3 The change curve of mass 

 
Fig. 4 The change curve of control angles 

 
V. CONCLUSION 

Initially, the finite-thrust orbit transfer optimal control 
problem is transformed into nonlinear programming problem 
by using the Legendre pseudospectral method. Subsequently, 
the dynamic optimization problem is conversed to a static state 
parameter optimization problem.  

TABLE I 
THE VALUE OF STATE VARIABLES, INITIAL & TERMINAL RESTRICTION 

 x(km) y (km) z(km) VX(m/s) Vy(m/s) Vz(m/s) m(kg) 

x(t0) 6123.7 3535.5 0.0 534.1 -925.1 7431.7 2850 

x(tf) -1238.7 -1929.5 6832.5 -6337.7 -3289.8 -2078.0 free 

x(t=tf) -1238.7 -1929.5 6832.5 -6337.7 -3289.8 -2078.0 2273.1 

Fig. 1 The change curve of position      
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The simulation results demonstrate that Legendre 
pseudospectral method is not sensitive to the initial conditions 
of orbital transfer. The results of a numerical simulation 
verified the validity of the proposed optimization method. The 
results indicate that the method can provide good performance 
on accuracy and fast convergence. It is expected that this novel 
optimization algorithm can be used to solve the similar 
optimization problems. 
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