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Abstract—In this paper we use the definition of CW basis of
a free simplicial algebra. Using the free simplicial algebra, it is
shown to construct free or totally free 2−crossed modules on suitable
construction data with given a CW−basis of the free simplicial
algebra. We give applications free crossed squares, free squared
complexes and free 2−crossed complexes by using of 1(one) skeleton
resolution of a step by step construction of the free simplicial algebra
with a given CW−basis.
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I. INTRODUCTION

Simplicial commutative algebras play an important role
in homological algebra, homotopy theory and algebraic
K−theory. The present article intends to study the 1(one)
skeleton resolution of a step by step construction of a free
simplicial algebra via André method’s, using with a given
CW−basis.

This study will be appear using step by step of Andre’s
method for a free simplicial algebra with a given CW−basis
in the 1−skeleton. Brown [2] and Ellis [3] presented the
definitions of coproduct and tensor product of groups. Coprod-
uct structure of algebras was introduced by Shammu in [8].
Brown, Ellis and Shammu did not introduce to free simplicial
algebra with a given CW−basis and also they never used these
definitions in their researches.

The step by step construction was used by Arvasi and Porter
in [1], but they did not build up this construction for the free
simplicial algebra with a given CW−basis. For this reason,
our method is completely different from their method and
the soonest finding results show that likeness on free crossed
square, squared complex and 2−crossed complex are basically
structure of algebraic topology.

We reach some results on these structures of algebraic topol-
ogy using the free simplicial algebra with a given CW−basis.
Therefore our method is more trustworthy which is easily
verified.

In this article we firstly introduce to the free simplicial alge-
bra with a given CW−basis. In addition, we find some results
using the free simplicial algebra with a given CW−basis.
Secondly, we give 1−skeleton resolution of the free sim-
plicial algebra with a given CW−basis A(1). Furthermore,
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we present the details of calculation concerning with in the
applications of coproduct and tensor product of crossed square,
square complex and 2−crossed complex in the section 3 and
4.

II. THE MOORE COMPLEX OF SIMPLICIAL ALGEBRA

Let us given a simplicial algebra A, then we may definite
the Moore complex of simplicial algebra as follows: The
Moore complex (NA, ∂) of A is the chain complex defined

by (NA)n =
n−1⋂
i=0

Kerdni with ∂n : NAn → NAn−1 induced

from dnn by restriction.
The nth homotopy module πn(A) of A is the

nth homology of the Moore complex of A, i.e.,

πn(A) ∼= Hn(NA, ∂) =
n⋂

i=0

Kerdni /d
n+1
n+1(

n⋂
i=0

Kerdn+1
i ).

III. FREE SIMPLICIAL ALGEBRA WITH GIVEN CW -BASIS

We recall that two definitions in [6] as follows in this
section.

Definition 3.1: A simplicial algebra A is called free if
(i) An is a free algebra with a given basis, for every integer
n ≥ 0,
(ii) the basis are stable under all degeneracy operators, i.e.,
for every pair of integers (i, n) with 0 ≤ i ≤ n and every
given generator x ∈ An and the element si(x) is a given
generator of An+1.

Definition 3.2: Let A be a free simplicial algebra (as
above). A subset A ⊂ A will be called a CW − basis for
A if
(a) An = A ∩ An freely generates An for all n ≥ 0,
(b) A is closed under degeneracies, i.e., x ∈ An implies
si(x) ∈ An+1 for all 0 ≤ i ≤ n,
(c) if x ∈ An is non-degenerate, then di(x) = en−1, (en−1,
the identity element of An−1) for all 0 ≤ i < n.
Let A be a free simplicial algebra with a given CW−basis, A,
then X0 = A0 freely generates A0, that is, A0 = A[X0]. If we
continue process of Definition 3.2, then A1 freely generates
A1 and let s0(X0) ⊆ A1 and also if Y1 = A1 \ s0(X0),
then di(y) = 0 for 0 ≤ i < 1 where y ∈ Y1. Therefore let
A1 = A[s0(X0) ∪ Y1] ∼= A[s0(X0)] ∗ A[Y1], where “ ∗ ” is
free product of A[s0(X0)] and A[Y1]. For A2, let s0(A1) ∪
s1(A1) ⊆ A2 and also if y ∈ Y2 = A2 \

1⋃
i=0

si(Ai), then

d0(y) = d1(y) = 0 and additionally y is in NA2. In general,

note that if Yn = An \
n−1⋃
i=0

si(Ai) then Yn ⊆ NAn and Yn

normally generates NAn.
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Thus we can give 1−skeleton resolution of A1 of the free
simplicial algebra with a given CW−basis. The 1−skeleton
A(1) of the free simplicial resolution of an algebra A can be
built by adding new indeterminate for instance, if there is an
one to one correspondence with Ω0 as of generator for π1(A),
A(1)

1 = A(0)
1 [X0] = A[s0(X0) ∪ Y1] ∼= A[s0(X0)] ∗ A[Y1],

where with the face maps and degeneracy map

A[s0(X0) ∪ Y1] ��
d0,d1 �� A[X0]

s0
��

d0
0 �� A

here A(X0)
d0
0−→ A is an augmentation map and s0, d

1
0 and

d11 are given by

d11(y1) = b1 ∈ Kerd00, d10(y1) = 0, y1 ∈ Y1,
x0 = s0(x0) for x0 ∈ X0

Thus 1−skeleton resolution A(1) looks like:

A(1) : · · · A2
����

d0,d1,d2 ��
A1��

s1,s0
��

��
d1,d0 �� A0
s0

��
f �� A/I.

where A((1),2)
2 = A[s1s0(X0) ∪ s1(Y1) ∪ s0(Y1)], A((1),1)

1 =

A[s0(X0) ∪ Y1] and A((1),0)
0 = A[X0].

A. Applications of Coproduct and Tensor Product of Crossed
Square

In the background of CW−complexes, Ellis [3] presented
an extraordinary definition of the top group in (totally) the free
crossed square using topological methods. A free simplicial
algebra with a given CW−basis is the algebraic analogue of
a CW−complex. Therefore one expect that the similar result
to hold in that setting. Now we give to application of tensor
product for crossed square of 1−skeleton resolution of the
free simplicial algebra with a given CW−basis. The functor
from the category of simplicial algebras to the crossed cubes
is defined as

M(−, 2) : SimpAlg → Crnn

in [1]. If for n = 2 we apply this functor to the 1−skeleton
resolution A(1) of the free simplicial algebra with a given
CW−basis A, we get M(A(1), 2) which is the free crossed
square is

M(A(1), 2) �

NA((1),2)
2 /∂3(NA((1),3)

3 ∩I3)

∂′
2

��

∂2 �� Ker d
((1),2)
0

μ

��
Ker d

((1),2)
1

μ′
�� A((1),1)

1

together with the h−map

h:Kerd1
((1),2)×Kerd0

((1),2) �� NA((1),2)
2 /∂3(NA((1),3)

3 ∩I3)

given by

x⊗y=h(x,y)=s1y0(s1y1−s0y1) mod ∂3(NA((1),3)
3 ∩I3)

where “ ⊗ ” is defined as coproduct or tensor product, and
let In be the ideal generated by the degenerate elements of
An (for n = 3). Then

A((1),2)
2 = A[s1s0(X0) ∪ s1(Y1)],

NA((1),2)
2 =

1⋂
i=0

Kerd1i = [s1(Y1)]
+ ∩ Z ′,

Kerd10 = [s1(Y1)]
+,

Kerd11 = Z ′ = {s1(y1)− s0(y1) : y1 ∈ Y1};

A((1),3)
3 = A[s2s1s0(X0) ∪ s2s1(Y1) ∪ s2s0(Y1) ∪ s1s0(Y1)],

NA((1),3)
3 =

2⋂
i=0

Kerd((1),3)i = [s2s1(Y1)]
+ ∩ Z+ ∩ Z+

1 ,

Kerd((1),3)0 = [s2s1(Y1)]
+,

Kerd((1),3)1 = Z+, Kerd((1),3)2 = Z+
1 ,

Z = {s2s1(x)− s2s0(x) y1 ∈ Y1} and
Z1 = {s2s0(y1)− s1s0(y1) : y1 ∈ Y1}.

Now we can conclude that if we use a CW−basis of the
free simplicial algebra, we calculate the 1−skeleton resolution
of a CW−basis of the free simplicial algebra. Thus we get
the result as follows.

Corollary 3.3: Let A(1) be the 1−skeleton resolution of the
free simplicial algebra with a given CW−basis. If the free
crossed square M(A(1), 2) as described above, then

NA((1),2)
2 /∂3(NA((1),3)

3 ∩I3) ∼= Kerd1((1),2)⊗A((1),1)
1

Kerd0((1),2).

Proof: The proof is clear since
x⊗ y = h(x, y) = s1y0(s1y1 − s0y1). See [1] in details. �

Corollary 3.4: If the simplicial algebra A equals to its
1−skeleton, so that A = A(1), then

π2(A) = Ker(Kerd((1),1)1 ⊗A((1),1)
1

Kerd((1),1)0 → A((1),0)
0 ).

Proof: We prove for k ≥ 1. If A(k) is k−skeleton resolution
of the free simplicial algebra with a given CW−basis, A, for
k ≥ 1, then

πk(A
(k)) = Ker(NA((k),k)

k /∂k+1(NA((k),k+1)
k+1 ) −→ A(k)

k+1).

By taking k = 1 and the previous corollary, we get the result.
�
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IV. APPLICATIONS OF COPRODUCT AND TENSOR
PRODUCT OF SQUARED COMPLEX AND 2-CROSSED

COMPLEX

Now we can give some of applications of 1−skeleton reso-
lution of the free simplicial algebra with a given CW−basis
such as square complex and 2−crossed complex in some struc-
ture of algebraic topology. Let A(1) be the 1−skeleton reso-
lution of the free simplicial algebra with a given CW−basis
of an algebra. By Corollary 3.3, we know that

Kerd((1),1)1 ⊗A(1)
1

Kerd((1),1)0

��

�� Kerd((1),1)0

��
Kerd((1),1)1

�� A((1),1)
1

is free square. Thus the free squared complex is

NA((1),1)
1

μ′

�����
���

... �� C �� NA((1),1)
1 ⊗A((1),1)

1

NA((1),1)
1

λ ���������

λ′ ���������

A((1),1)
1 (∗1)

NA((1),1)
1

μ

��������

where A((1),2)
2 = A[s1s0(X0) ∪ s1(Y1) ∪ s0(Y1)], A((1),1)

1 =

A[s0(X0) ∪ Y1] and A((1),0)
0 = A[X0], whereNA((1),1)

1 =

Kerd10 = [Y1]
+, NA((1),1)

1 = Kerd((1),1)1 = [s1(y1) −
s0(y1)] = Z ′,

C =
NA((1),3)

3

(NA((1),3)
3 ∩ I3) + d4(NA((1),4)

4 ∩ I4)
,

A((1),3)
3 = A[s2s1s0(X0) ∪ s2s1(Y1) ∪ s2s0(Y1) ∪ s1s0(Y1)],

NA((1),3)
3 =

2⋂
i=0

Kerd1i = [s2s1(Y1)]
+ ∩ Z+ ∩ Z+

1

Kerd((1),3)0 = [s2s1(Y1)]
+,

Kerd((1),3)1 = Z+, Z = {s2s1(y1)− s2s0(y1), y1 ∈ Y1}
and Kerd((1),3)2 = Z+

1 , Z1 = {s2s0(y1)− s1s0(y1) : y1 ∈
Y1}.
A((1),4)

4 = A[s3s2s1s0(X0) ∪ s3s2s1(Y1) ∪ s3s2s0(Y1) ∪
s3s1s0(Y1) ∪ s2s1s0(Y1)],
NA((1),4)

4 =
3⋂

i=0

Kerd((1),4)i = [s3s2s1(Y1)]
+∩Z+

2 ∩Z+
3 ∩Z+

4 ,

Kerd((1),4)0 = [s3s2s1(Y1)]
+ Z+

2 = Kerd((1),4)1 , Z2 =

{s3s2s1(y1) − s3s2s0(y1), y1 ∈ Y1}, Z+
3 = Kerd((1),4)2 ,

Z3 = {s3s2s0(y1) − s3s1s0(y1), y1 ∈ Y1}, Z+
4 =

Kerd((1),4)3 ,
since Z4 = {s3s1s0(y1) − s2s1s0(y1) : y1 ∈ Y1} by a
free square complex, we mean one in which the crossed
square is free, and in which each Cn is free algebra with a
given CW−basis for n ≥ 3.

Crossed modules techniques give a very efficient way to get
the information on a homotopy type. If they clearly correspond
to 1−types (and hence topological 2−types) then this is called
as the algebraic model. We have recalled from Grandjeán and
Vale’s work [4], in 1986 that 2−crossed modules correspond
to 2−types (and hence topological 3−types) is also defined as
algebraic model.

If C1 → C0 is a crossed module in a crossed complex
(· · · → Cn → · · · → C2 → C1 → C0), then we say that
a crossed complex is called a 1−crossed complex and still if
C2 → C1 → C0 is a 2−crossed module in a crossed complex,
then we say that a crossed complex is also called a 2−crossed
complex. Additionally C1 → C0 and C2 → C1 → C0 are
said to be “tail” of crossed complex. Furthermore, totally free
2−crossed complex of group was defined by A. Mutlu and T.
Porter in [7], and 2−crossed complex of algebra was defined
by A. Mutlu in [5].

Now we can give the definition in [5] as follows.
Definition 4.1: A 2−crossed complex of algebras is a se-

quence of algebras

C : · · · → Cn
∂n→ Cn−1 → · · · → C2

∂2→ C1
∂1→ C0

in which
(i) C0 acts on Cn, n ≥ 1, the action of ∂C1 is trivial on Cn

for n ≥ 3;
(ii) for each ∂n this is a C0-algebra homomorphism and
∂i∂i+1 = 0 for all i ≥ 1;
and
(iii) C2

∂2→ C1
∂1→ C0 is a 2−crossed module.

A 2−crossed complex C will be said to be free if for n ≥ 3,
the C0/∂C1-module, Cn are free and the 2−crossed complex
at the base is also free 2−crossed module. Additionally it will
be totally free if the base 2−crossed module is totally free
(see [5]).

Now we can examine a free 2−crossed complex of the free
simplicial algebra. Firstly A(1) be the 1−skeleton resolution
of the free simplicial algebra with a given CW−basis. Then
free 2−crossed complex is

...
∂5 �� C5

∂4 �� C4

∂3 �� C3

∂2 �� NA((1),1)
1

∂1 �� NA((1),0)
0

where C3 =
NA((1),2)

2

(NA((1),2)
2 ∩I2)+d3(NA((1),3)

3 ∩I3)
, and for each Cn

is the free simplicial algebra with a given CW−basis, then

Cn =

{
NAn for n = 0, 1
NA2/d3(NA3 ∩ I3) for n = 2
NAn/(NAn ∩ In) + dn+1(NAn+1 ∩ In+1) for n ≥ 3

is induced by the differential of NA with ∂n (see [7], [1]).
We thus have a functor

ρ : SkSimpAlg≤1 −→ FreeSqComp

where SkSimpAlg≤1 is the category of the 1−skeleton of
the free simplicial algebra with a given CW−basis and
FreeSqComp is the category of the free squared complex.

The homotopy module πn(ρ), for n ≥ 1, the squared
complex (∗1) is defined to be the homology module of the
complex

...
∂6 �� C5

∂5 �� C4

∂4 �� L
∂3 �� M�N

∂2 �� A �� 0

with ∂3(l) = (−λ′l, λl) and ∂2(m,n) = μ(m) + μ′(n). The
axioms of a crossed square guarantee that ∂3 and ∂2 are
homomorphism with ∂4(C4) ideal in Ker(∂3), ∂3(L) ideal
in Ker(∂2), and ∂2(M � N) ideal in A respectively. Clearly
πn(ρ) = Ker∂n/Im∂n+1.
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Note that the homotopy module πn(ρ(A(1))) of the squared
complex

ρ
(
A

(1))
)
=

⎛
⎜⎜⎜⎝Cn,

⎛
⎜⎜⎜⎝

NA((1),1)
1 ⊗

A(1)
1

NA((1),1)
1

��

�� NA((1),1)
1

��
NA((1),1)

1
�� A(1)

1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

is the homology module of the complex

...
∂6 �� C5

∂5 �� C4

∂4 �� C3
λ �� NA((1),1)

1

∂ �� A((1),1)
1

�� 0.

This is also the 2−crossed complex where C3 =

NA((1),1)
1 ⊗A((1),1)

1
NA((1),1)

1 .

By the (totally) free square complex, we mean that the
crossed square is (totally) free, and also each Cn is the free
simplicial algebra with a given CW−basis for n ≥ 3.

Now we can give some theorems, such as the follow-
ing theorem and corollary obviously use the definition of a
CW−basis.

Moreover we give some results concerning with the free
simplicial algebra with a given CW−basis by using in the
1−skeleton resolution for an algebra.

Theorem 4.2: The category of squared complexes of alge-
bras is equivalent to the category of the 2−crossed complexes
of algebras.
Proof: The category of crossed square of algebra is equivalent
to the category of 2−crossed module of algebra. �

Thus we may obtain the result of the free version of The-
orem 4.2 where the proof of its is trivial between equivalent
two categories as follows.

Corollary 4.3: The category of the free squared complexes
of algebras is equivalent to the category of the free 2−crossed
complexes of algebras. �
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