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Abstract—We employ the idea of Hirota’s bilinear method, to
obtain some new exact soliton solutions for high nonlinear form of
(2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multi-
ple singular soliton solutions were obtained by this method. More-
over, multiple singular soliton solutions were also derived.
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I. INTRODUCTION

Many important phenomena and dynamic processes in

physics, mechanics, chemistry and biology can be represented

by nonlinear partial differential equations. The study of exact

solutions of nonlinear evolution equations plays an important

role in soliton theory and explicit formulas of nonlinear partial

differential equations play an essential role in the nonlinear

science. Also, the explicit formulas may provide physical

information and help us to understand the mechanism of

related physical models.

In recent years, many kinds of powerful methods have

been proposed to find solutions of nonlinear partial differen-

tial equations, numerically and/or analytically, e.g., the tanh

function method [1], the homogeneous balance method [2],

the tanhcoth method [3], the Exp-function method [4], the

decomposition method [5] and the improved tanh function

method [6].

In this paper, by means of the Hirota’s bilinear method and

wronskian form, we will obtain some exact and new solutions

for the (2 + 1)-dimensional potential Kadomtsev-Petviashvili

equation. In the following section we have a brief review

on the Hirota’s bilinear method and in Section 3 and 4, we

apply the Hirota’s bilinear method to obtain multiple soliton

solutions and multiple singular soliton solutions of the (2

+ 1)-dimensional potential Kadomtsev-Petviashvili equation .

Finally, the paper is concluded in Section 5.

II. THE HIROTA BILINEAR METHOD

To formally derive N-soliton solutions for completely in-

tegrable equations, we will use the Hirotas direct method

combined with the simplified version of [7]–[9]. It was proved

by many that soliton solutions are just polynomials of expo-

nentials. This will be also confirmed in the coming discussions.

We first substitute

u(x, t) = ekx+my−ct, (1)
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into the linear terms of any equation under discussion to

determine the relation between k and c. We then substitute

the Cole-Hopf transformation

u(x, y, t) = R (ln f(x, y, t))xx, (2)

into the equation under discussion, where the auxiliary func-

tion f , for the single soliton solution, is given by

f(x, y, t) = 1 + C1 f1(x, y, t) = 1 + C1 e
θ1 . (3)

The steps of the Hirotas method as summarized in [10]–[13]

are as follows:

(i) For the relation between ki and ci, we use

u(x, y, t) = eθi , θi = ki x+mi y − ci t, (4)

(ii) For single soliton, we use

f = 1 + C1 e
θ1 , (5)

to determine R.

(iii) For two-soliton solutions, we use

f = 1 + C1 e
θ1 + C2 e

θ2 + C1 C2 a12 e
θ1+θ2 , (6)

to determine the phase shift coefficient a12, and hence can be

generalized for aij ,1 ≤ i < j ≤ 3.

(iv) For three-soliton solutions, we use

f = 1 + C1 e
θ1 + C2 e

θ2 + C3 e
θ3 + C1 C2 a12 e

θ1+θ2

+C1 C3 a13 e
θ1+θ3 + C2 C3 a23 e

θ2+θ3

+C1 C2 C3 b123 e
θ1+θ2+θ3 ,

(7)

to determine b123. Pekcan proved in [14], b123 = a12 a23 a13,

then the equation gives rise to three-soliton solutions.

In the following, we will apply the aforementioned steps to

potential Kadomtsev-Petviashvili equation. Multiple soliton

solutions are obtained for C1 = C2 = C3 = 1. However,

multiple singular soliton solutions are obtained if C1 = C2 =
C3 = −1.

III. MULTIPLE SOLITON SOLUTIONS OF THE POTENTIAL

KADOMTSEV-PETVIASHVILI EQUATION:

In this paper, we investigate explicit formula of soliton

solutions of the following high nonlinear form of (2 + 1)-

dimensional potential Kadomtsev-Petviashvili equation given

in [1],

uxt +
1

4
uxxxx +

3

2
ux uxx +

3

4
uyy = 0 (8)
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where u = u(x, y, z, t) : Rx × Ry × Rt → R.
To determine multiple-soliton solutions for Eq. (8), we follow

the steps presented above. We first consider C1 = C2 = C3 =
1. Substituting

u (x, y, t) = eθi , θi = kix+miy − wit (9)

into the linear terms of Eq.(8) to find the relation

wi =
ki

4 + 3mi
2

4 ki
, i = 1, 2, . . . , N (10)

and consequently, θi becomes

θi = kix+miy −
ki

4 + 3mi
2

4 ki
t. (11)

To determine R, we substitute

u(x, y, t) = R (ln f(x, y, t))x (12)

where

f(x, y, t) = 1 + f1(x, y, t) = 1 + e
k1x+m1y−

k1
4 + 3m1

2

4 k1

into Eq.(8) and solve to find that R = 2.

This means that the single singular soliton solution is given

by

u (x, y, t) = 2
k1e

k1x+m1y−
k1

4 + 3m1
2

4 k1

1 + e
k1x+m1y−

k1
4 + 3m1

2

4 k1

. (13)

For the two-soliton solutions, we substitute

u(x, y, t) = 2 (ln f(x, y, t))x, (14)

where

f(x, y, t) = 1 + eθ1 + eθ2 + a12 e
θ1+θ2 , (15)

into Eq.(8), where θ1 and θ2 are given in Eq.(11) to obtain

a12

=
−4 (k1 − k2) (w1 − w2) + (k1 − k2)

4
+ 3 (m1 −m2)

2

4 (k1 + k2) (w1 + w2)− (k1 + k2)
4
− 3 (m1 +m2)

2
,

(16)

and

ws =
ks

4 + 3ms
2

4 ks
, s = 1, 2,

for |ki| 6= |k2| and |m1| 6= |m2|, hence

aij

=
−4 (ki − kj) (wi − wj) + (ki − kj)

4
+ 3 (mi −mj)

2

4 (ki + kj) (wi + wj)− (ki + kj)
4
− 3 (mi +mj)

2
,

(17)

and

ws =
ks

4 + 3ms
2

4 ks
, s = 1, 2, 3,

Fig. 1. The two soliton solution with k1 = 1 and k2 = −1.2.

for |ki| 6= |kj | and |mi| 6= |mj |.
It is interesting to point out that for ms = ks, s = 1, 2, 3, the

phase shift reduces to

a12 =
(k1 − k2)

2

(k1 + k2)
2
, (18)

for |k1| 6= |k2|, hence

aij =
(ki − kj)

2

(ki + kj)
2
, (19)

for |ki| 6= |kj |. This in turn gives

f (x, y, t) = 1 + eθ1 + eθ2 +
(k1 − k2)

2

(k1 + k2)
2
eθ1+θ2 , (20)

where

θi = kix+ kiy −
1

4
k1

(
k1

2 + 3
)
t, i = 1, 2, (21)

which is a two soliton solution(Fig. 1).

Similarly, to determine the three soliton solutions, we set

f(x, y, t) = 1 + eθ1 + eθ2 + eθ3 + a12 e
θ1+θ2 + a13 e

θ1+θ3

+a23 e
θ2+θ3 + a12 a23 a13 e

θ1+θ2+θ3 .
(22)

To determine the three soliton solutions explicitly, we

substitute the last result for f(x, y, t) into Eqs. (28), (See

Fig. 2).

The higher level soliton solutions, for n ≥ 4 can be

obtained in a parallel manner. The obtained results confirm

that the (2+1)-dimensional potential Kadomtsev-Petviashvili

equation is completely integrable and possesses multiple

soliton solutions of any order.
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Fig. 2. The three soliton solution with k1 = −1, k2 = 1.2 and k3 = 1.6.

IV. MULTIPLE SINGULAR SOLITON SOLUTIONS OF THE

POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION :

We first consider C1 = C2 = C3 = −1. Substituting

u (x, y, t) = eθi , θi = kix+miy − wit (23)

into the linear terms of Eq.(8) to find the relation

wi =
ki

4 + 3mi
2

4 ki
, i = 1, 2, . . . , N (24)

and consequently, θi becomes

θi = kix+miy −
ki

4 + 3mi
2

4 ki
t. (25)

To determine R, we substitute

u(x, y, t) = R (ln f(x, y, t))x, (26)

where f(x, y, t) = 1 − f1(x, y, t) = 1 + ek1x+m1y+k3

1
t into

Eq.(8) and solve to find that R = 2.

This means that the single singular soliton solution is given

by

u (x, y, t) = −2
k1e

k1x+m1y−
k1

4 + 3m1
2

4 k1

1 + e
k1x+m1y−

k1
4 + 3m1

2

4 k1

. (27)

For the two-soliton solutions, we substitute

u(x, y, t) = 2 (ln f(x, y, t))x (28)

where

f(x, y, t) = 1− eθ1 − eθ2 + a12 e
θ1+θ2 , (29)

into Eq.(8), where θ1 and θ2 are given in Eq.(25) to obtain

a12

=
−4 (k1 − k2) (w1 − w2) + (k1 − k2)

4
+ 3 (m1 −m2)

2

4 (k1 + k2) (w1 + w2)− (k1 + k2)
4
− 3 (m1 +m2)

2
,

(30)

Fig. 3. The two soliton solution with k1 = 1 and k2 = −1.2.

and

ws =
ks

4 + 3ms
2

4 ks
, s = 1, 2,

for |ki| 6= |k2| and |m1| 6= |m2|, hence

aij

=
−4 (ki − kj) (wi − wj) + (ki − kj)

4
+ 3 (mi −mj)

2

4 (ki + kj) (wi + wj)− (ki + kj)
4
− 3 (mi +mj)

2
,

(31)

and

ws =
ks

4 + 3ms
2

4 ks
, s = 1, 2, 3,

for |ki| 6= |kj | and |mi| 6= |mj |.

It is interesting to point out that for ms = ks, s = 1, 2, 3, the

phase shift reduces to

a12 =
(k1 − k2)

2

(k1 + k2)
2
, (32)

for |k1| 6= |k2|, hence

aij =
(ki − kj)

2

(ki + kj)
2
, (33)

for |ki| 6= |kj |. This in turn gives

f (x, y, t) = 1− eθ1 − eθ2 +
(k1 − k2)

2

(k1 + k2)
2
eθ1+θ2 , (34)

where

θi = kix+ kiy −
1

4
k1

(
k1

2 + 3
)
t, i = 1, 2, (35)

which is a two soliton solution(Fig. 3).
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Fig. 4. The three soliton solution with k1 = −1, k2 = 1.2 and k3 = −1.6.

Similarly, to determine the three soliton solutions, we set

f(x, y, t) = 1− eθ1 − eθ2 − eθ3 + a12 e
θ1+θ2 + a13 e

θ1+θ3

+a23 e
θ2+θ3 − a12 a23 a13 e

θ1+θ2+θ3 .
(36)

To determine the three soliton solutions explicitly, we

substitute the last result for f(x, y, t) into Eqs. (28),( See

Fig. 4).

The higher level singular soliton solutions, for n ≥ 4
can be obtained in a parallel manner.

V. CONCLUSION

In this paper, by using the Hirota bilinear method, we

obtained some explicit formulas of solutions for the (2+1)-

dimensional potential Kadomtsev-Petviashvili equation. Mul-

tiple soliton solutions were formally derived. Moreover, multi-

ple singular soliton solutions of any order was derived as well.

The results of other works are special cases of our results.
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