
 

 

  
Abstract—Main Memory Database systems (MMDB) store their 

data in main physical memory and provide very high-speed access. 
Conventional database systems are optimized for the particular 
characteristics of disk storage mechanisms. Memory resident 
systems, on the other hand, use different optimizations to structure 
and organize data, as well as to make it reliable. 

This paper provides a brief overview on MMDBs and one of the 
memory resident systems named FastDB and compares the 
processing time of this system with a typical disc resident database 
based on the results of the implementation of TPC benchmarks 
environment on both. 

 
Keywords—Disk-Resident Database, FastDB, Main Memory 

Database. 

I. INTRODUCTION 

HE idea of Main Memory Database (MMDB), using 
physical memory as primary storage and probably a disk 

subsystem for backup, has recently been an active research 
topic. MMDBs can achieve significant improvements in 
performance, processing time and throughput rates over 
conventional database systems by eliminating the need for I/O 
to perform database applications.  

In contrast with the conventional DBMS systems, some 
problems are introduced in the MMDB environment.  

The major problem deals with the volatility of main 
memory; so in this framework the issues concerned with 
efficient database recovery are more complex than in 
traditional DBMS systems [13].  

In this paper we study the MMDB systems and their 
differences with Disc Resident Data Bases (DRDB) [10]; we 
use FastDB [1], a highly efficient main memory database 
system, to implement TPC benchmark [14, 15] on and 
compare its performance with a DRDB such as MS-SQL. 
FastDB assumes that the whole database is present in RAM 
and optimizes the search algorithms and structures according 
to this assumption. Our performance results indicate that 
elimination of the time overhead CAUSED BY transferring 
database files to the buffer pool and vice versa, makes FastDB 
work significantly faster than a traditional DATABASE; 
therefore it fits more efficiently to the requirements OF 
TODAY’S real time applications. 
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The remainder of this paper is organized as follows: In 
Section 3, MMDB and its corresponding issues are described; 
Section 4 and 5 will provide details of FastDB as an efficient 
main memory database and TPC as a performance benchmark; 
Section 6, details the system, environment, applications under 
which the experiments are conducted; Section 7, discusses the 
experimental results. At the end, Section 8 outlines the 
conclusions and Section 9 represents future directions of the 
work. 

II. MAIN MEMORY DATABASE (MMDB) 
During the mid-1980s falling DRAM prices seemed to 

suggest that future computers would have such huge main 
memories that most databases could entirely be stored in them 
[4]. In such situations, it would be possible to eliminate all 
(expensive) I/O from DBMS processing. This would seriously 
change the architecture for a DBMS. An important question in 
a MMDBMS is how to do transactions and recovery in an 
efficient way. Some of the proposed algorithms assume that a 
(small) stable subset of the main memory exists. This stable 
memory for example can be used to place a redo log. Other 
algorithms do not assume stable memories, and still use I/O to 
write transaction information to a stable storage. These 
algorithms, hence, do not eliminate I/O, but minimize it, as the 
critical path in a MMDBMS transaction only needs to write 
the log; not data pages from the buffer manager [16].  

A general MMDB architecture consists of a main memory 
implemented via standard RAM and an optional non-volatile 
(stable) memory. The main memory holds the primary copy of 
the database, while the stable memory holds the log and a 
backup copy of the database.  A logger process flushes the 
logs asynchronously to the disk. Alternatively, an additional 
nonvolatile memory may be used as a shadow memory. This 
memory is intended to hold updates performed by active 
transactions and the tail end of the log that contains 
information about those updates [16]. 

A specific problem in MMDBMS is query optimization. 
The lack of I/O as dominant cost factor means that it is much 
more difficult in a MMDBMS to model query costs, as they 
depend on fuzzy factors like CPU execution cost of a routine. 
Therefore, DBMS query optimization tends to make use of 
simple cost models that contain “hard” constants obtained. 
One challenge in this area is to model the interaction between 
coding style, hardware factors like CPU and memory 
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architecture and query parameters into a reliable prediction of 
main memory execution cost [10][12]. 

MMDB systems are ideal for applications that require high 
throughput and a fast response time. With the increasing 
demand for high-performance systems and the steady decrease 
in memory cost, MMDBs have become an attractive 
alternative to DRDBs. 

While meeting the high-performance demand of many real-
time applications, MMDBs are naturally more vulnerable to 
failures than conventional DRDBs. Thus, the recovery 
component of an MMDB system must be properly designed, 
implemented and maintained. Three aspects of the recovery 
subsystem serve to ensure that the MMDB can recover from 
any failure: logging, check pointing and reloading.  

III. FASTDB 
FastDB [1] is a highly efficient main memory database 

system with realtime capabilities and convenient C++ 
interface. FastDB is optimized for applications with 
dominated read access pattern. High speed of query execution 
is provided by the elimination of data transfer overhead and a 
very effective locking implementation. The Database file is 
mapped to the virtual memory space of each application 
working with the database. So the query is executed in the 
context of the application, requiring no context switching and 
data transfer. Synchronization of concurrent database access is 
implemented in FastDB by means of atomic instructions, 
adding almost no overhead to query processing. FastDB 
assumes that the whole database is present in RAM and 
optimizes the search algorithms and structures according to 
this assumption. Moreover, FastDB has no overhead caused 
by database buffer management and needs no data transfer 
between a database file and buffer pool. That is why FastDB 
will work significantly faster than a traditional database with 
all data cached in buffers pool [1].  

FastDB supports transactions, online backup and automatic 
recovery after system crash. The transaction commit protocol 
is based on a shadow root pages algorithm, performing atomic 
update of the database. Recovery can be done very fast, 
providing high availability for critical applications. Moreover, 
the elimination of transaction logs improves the total system 
performance and leads to a more effective usage of system 
resources [1].  

Although FastDB is optimized in the assumption that 
database as a whole fits into the physical memory of the 
computer, it is also possible to use it with databases, the size 
of which exceeds the size of the physical memory in the 
system. In the last case, standard operating system swapping 
mechanisms will work. But all FastDB search algorithms and 
structures are optimized under the assumption of residence of 
all data in memory, so the efficiency for swapped out data will 
not be very high. 

FastDB is an application-oriented database. Database tables 
are constructed using information about application classes. 
FastDB supports automatic scheme evaluation, allowing users 

to do changes only in one place: in users’ application classes. 
FastDB provides a flexible and convenient interface for 
retrieving data from the database. A SQL-like query language 
is used to specify queries. Such post-relational capabilities as 
non-atomic fields, nested arrays, user-defined types and 
methods, direct interobject references simplifies the design of 
database applications and makes them more efficient. FastDB 
uses a notation more popular for object-oriented programming 
than for a relational database. Table rows are considered as 
object instances, the table is the class of these objects. Unlike 
SQL, FastDB is oriented on work with objects, instead of 
SQL tuples. So the result of each query execution is a set of 
objects of one class [1]. 

IV. TPC PERFORMANCE BENCHMARK 
The Transaction Processing Performance Council (TPC) 

has defined a series of benchmark standards for database 
systems [14] [15]. 

In this study, we have tried to implement the same TPC 
environment (TPC A and TPC B) on two mentioned database 
systems so that we can use it for performance comparisons 
such as TPS measurements. In this work, we focus more 
particularly on comparing MMDB with DRDB for varying 
query loads, with varying size of DBs mentioned in the 
following. 

V. IMPLEMENTATION OF THE BENCHMARK ENVIRONMENT 
In order to compare performance time between MMDB and 

DRDB, we implemented a Visual C++.NET interface in 
conjunction with FastDB, and then using TPC-A benchmark 
and some extra testing benchmarks (to make homogeneous 
environments for both kinds of databases), we have used a set 
of intensive queries (including select, insert, update and 
delete) for varying number of table records and varying 
number of updates, implemented within the same benchmark 
environment, for both FastDB and MS-SQL databases. Notice 
that in the case of update, number of updates is equal to the 
value that we set at each run. Also, the recorded time is 
calculated from the beginning of an “existence checking” –
which checks whether the produced random 
source/destination account/branch exists (or not) -to the end of 
the query execution. Random select query is designed so that 
it selects for half of the branches, all of the accounts which 
have a balance less than the original account balance. The 
experiment was performed on a Pentium IV (2.4 GHz) system 
with Windows XP as operating system and 256 MB of RAM. 

VI. EXPERIMENTAL RESULTS 
In this section we describe the measured times in the 

different cases of intensive singleton queries (Insert, Update, 
and Select) for both MS-SQL and FastDB. 

A. Insert Time Measurements 
To observe the differences in performance of intensive 

insert queries between MS-SQL and FastDB, we ran the 
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benchmark in insert mode only with the number of target table 
records, varying from 1000 to 1000000 records; it should be 
mentioned that we cleared the database after each run before 
the next run. In this case, we inserted a specified number of 
records and measured the time of the whole insertion 
operation e.g. 19407 ms for 200000 records. The results of 
these measurements are shown in Fig. 1. As shown in this 
diagram, by increasing the numbers of records, the required 
time for performing update transactions increases. Also it is 
noticeable that FastDB insertion time is about 1000 times less 
than MS-SQL’s. As a result, it is confirmed that in 
applications which require very short response times, (such as 
real-time applications), the conventional database systems will 
not satisfy the performance requirements as good as MMDBs. 
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Fig. 1 Comparison of insert time between FastDB and MS-SQL for 

varying number of records 

B. Update Time Measurements 
For the case of intensive update queries, we performed the 

benchmark with constant number of updates and varying 
number of records in the target table. As the diagram below 
shows, for heavy loads (in contrast with low loads) FastDB 
does not perform much better than MS-SQL. Further analyses 
are needed to find out the reasons of such degradation in 
FastDB performance. We suggest to study the effect of 
swapping between main memory and hard disc to realize that 
why it could probably have such an important influence on the 
performance of FastDB.  
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Fig. 1 Comparison of up date time between FastDB and MS-SQL for 
varying number of records in the table and with constant number of 

updates 

C. Selection Time Measurement 
We used a sample range query in this part of the benchmark 

that selects the accounts whose account balance is less than an 

original amount. Since random access to FastDB performs 
similar to the case of update we have chosen range selection 
to compare FastDB with MS-SQL in sequential access 
queries. In the following diagram (Fig. 3), results of this 
benchmark are shown. Here again like the case of update, MS-
SQL has a more regular behavior than FastDB; for less than 
150000 records, FastDB  has a better response time than MS-
SQL, but after this range, its response time grows 
increasingly. This shows the good performance of MS-SQL in 
such situations compared to FastDB. 
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Fig. 2 Comparison of selection time between FastDB and MS-SQL 

for varying number of records 

VII. DISCUSSION  
A wide range of application areas such as real-time/military 

applications require very short and predictable response time. 
Disks have long response time, and are not suitable as primary 
storage media for them. Main Memory has short response 
time, and its decreasing cost makes it affordable and suitable 
for these applications. Volatility of memory raises concerns 
about durability of in-memory data. Main Memory DBMS 
manages in-memory data and ensures ACID properties. 

In this paper, we have evaluated one of the existing 
MMDBs, called FastDB[1], and implemented to compare it 
with MS-SQL. As the results show, FastDB is an application-
orienant database, and is optimized for applications with 
dominated read access pattern. FastDB assumes that the whole 
database is present in RAM and eliminates the overhead time 
due to transferring database files to the buffer pool and vice 
versa; therefore since FastDB caches all its data in buffer 
pool, it works significantly faster than a traditional database 
until it does not need any swap between main memory and 
hard disc. 

VIII. CONCLUSION 
Like almost every research also the work presented here 

leaves some questions unanswered and even discovers new 
questions. Still many issues for future work remain; some of 
these open issues would be mentioned here: 
• It needs further analysis to find out why FastDB shows 

unexpected behavior in heavy loads; it seems to be 
necessary to consider a mechanism to reduce the effect of 
swapping between main memory and disc in such DBs. 

• FastDB uses T-tree for indexing the database and some 
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mechanism like “shadow paging” to guarantee quick and 
accurate recovery, therefore it is desirable to evaluate 
some other MMDB systems and compare them to 
FastDB. 

ACKNOWLEDGMENT 
We would like to thank Konstatin Knizhnik for providing 

the latest version of FastDB online and for his e-mail support 
and help with development of FastDB applications.  

REFERENCES   
[1] FastDB: a main-memory database object-relational database system, 

Available: http://www.garret.ru/~knizhnik/fastdb/FastDB.htm 
[2] Inseon Lee, Heon Y.Yeon, Taesoon Park, “A New Approach for 

Distributed Main Memory Database Systems: A Causal Commit 
Protocol”, IEICE Trans. Inf. & Syst., Vol.ES7, No.1 January 2004. 

[3] Nicholas Carriero, Michael V. Osier, Kei-Hoi Cheung, Peter Masiar, 
Perry L. Miller, Kevin White, Martin Schultz, “ Exploring the Use of 
Main Memory Database (MMDB) Technology for the Analysis of Gene 
Expression Microarray Data”, Technical report, April 2004. 

[4] Stefan Manegold, “Understanding, Modeling, and Improving Main-
Memory Database Performance”, November 2002, Available: 
www.cwi.nl/htbin/ins1/publications?request=pdf&key=Ma:DISS:02. 

[5] Philip Bohannon, Peter McIlroy, Rajeev Rastogi,” Main Memory Index 
Structures with FixedSize Partial Keys”, In Proceedings of SIGMOD 
Conference, 2001. 

[6] S. Manegold, P. A. Boncz, and M. L. Kersten. “Optimizing Main-
Memory Join on Modern Hardware”, IEEE Transactions on Knowledge 
and Data Engineering (TKDE), Vol.14, No.4, pp.709–730, July 2002. 

[7] J. Rao and K. A. Ross. “Making B+-Trees Cache Conscious in Main 
Memory”, Proc ACM SIGMOD International Conference on 
Management of Data (SIGMOD), pp. 475–486, Dallas, TX, USA, May 
2000. 

[8] Tobin J. Lehman, Michael J. Carey, “A Study of Index Structures for 
Main Memory Database Management Systems”, Proc the Twelfth 
International Conference on Very Large Data Bases, Kyoto, August, 
1986. 

[9] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Dennis Leinbaugh,  
“Logical and Physical Versioning in Main Memory Databases”, Proc the 
23rd VLDB Conference, Athens, Greece, 1997. 

[10] Hector Garcia-Molina, Kenneth Salem, “Main Memory Database 
Systems: An overview”, IEEE Transactions on Knowledge and Data 
Engineering, 4(6):509--516, Dec. 1992. 

[11] Piyush Burte, Boanerges Aleman-Meza, D. Brent Weatherly, Rong Wu, 
“Transaction Management for a Main-Memory Database”, Available: 
http://lsdis.cs.uga.edu/~aleman/mams/csci8370/paper/. 

[12] Tobin J. Lehman, Michael J. Carey, “Query Processing in Main Memory 
Database Management Systems”, Proceedings of the ACM SIGMOD 
International Conference on the Management of Data, 1986, pp.239-250. 

[13] Margaret H. Eich, “Main Memory Database Recovery”, Proceedings of 
1986 ACM Fall joint computer conference, Pages: 1226 – 1232, 1986. 

[14] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Haldar, S. Joshi, A. 
Khivesera, H. F. Korth, P. McIlroy, J. Miller, P. P. S. Narayan, M. 
Nemeth, R. Rastogi, S. Seshadri, A. Silberschatz, S. Sudarshan, M. 
Wilder, and C. Wei. “DataBlitz Storage Manager: Main-Memory 
Database Performance for Critical applications”, Proc ACM SIGMOD 
International Conference on Management of Data (SIGMOD), pp.519–
520, 1999. 

[15] M. Kauffman, "TPC BENCHMARK A Standard Specification", The 
Performance Handbook: for Database and Transaction Processing 
Systems, Transaction Processing Performance Council (TPC), 1991. 

[16] Fremont, “TPC Benchmark B Standard Specification “, Waterside 
Associates, Transaction Processing Performance Council, CA., August 
1990. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008 

497International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

58
8.

pd
f




