

Abstract—Main Memory Database systems (MMDB) store their

data in main physical memory and provide very high-speed access.
Conventional database systems are optimized for the particular
characteristics of disk storage mechanisms. Memory resident
systems, on the other hand, use different optimizations to structure
and organize data, as well as to make it reliable.

This paper provides a brief overview on MMDBs and one of the
memory resident systems named FastDB and compares the
processing time of this system with a typical disc resident database
based on the results of the implementation of TPC benchmarks
environment on both.

Keywords—Disk-Resident Database, FastDB, Main Memory

Database.

I. INTRODUCTION

HE idea of Main Memory Database (MMDB), using
physical memory as primary storage and probably a disk

subsystem for backup, has recently been an active research
topic. MMDBs can achieve significant improvements in
performance, processing time and throughput rates over
conventional database systems by eliminating the need for I/O
to perform database applications.

In contrast with the conventional DBMS systems, some
problems are introduced in the MMDB environment.

The major problem deals with the volatility of main
memory; so in this framework the issues concerned with
efficient database recovery are more complex than in
traditional DBMS systems [13].

In this paper we study the MMDB systems and their
differences with Disc Resident Data Bases (DRDB) [10]; we
use FastDB [1], a highly efficient main memory database
system, to implement TPC benchmark [14, 15] on and
compare its performance with a DRDB such as MS-SQL.
FastDB assumes that the whole database is present in RAM
and optimizes the search algorithms and structures according
to this assumption. Our performance results indicate that
elimination of the time overhead CAUSED BY transferring
database files to the buffer pool and vice versa, makes FastDB
work significantly faster than a traditional DATABASE;
therefore it fits more efficiently to the requirements OF
TODAY’S real time applications.

Authors are with the Database Research Group, Control and Intelligent
Processing Center of Excellence, Faculty of ECE, School of Engineering,
University of Tehran, Tehran, Iran (e-mail: f.raja@ece.ut.ac.ir,
Rahgozar@ut.ac.ir, n.razavi@ece.ut.ac.ir, m.siadaty@ece.ut.ac.ir).

The remainder of this paper is organized as follows: In
Section 3, MMDB and its corresponding issues are described;
Section 4 and 5 will provide details of FastDB as an efficient
main memory database and TPC as a performance benchmark;
Section 6, details the system, environment, applications under
which the experiments are conducted; Section 7, discusses the
experimental results. At the end, Section 8 outlines the
conclusions and Section 9 represents future directions of the
work.

II. MAIN MEMORY DATABASE (MMDB)
During the mid-1980s falling DRAM prices seemed to

suggest that future computers would have such huge main
memories that most databases could entirely be stored in them
[4]. In such situations, it would be possible to eliminate all
(expensive) I/O from DBMS processing. This would seriously
change the architecture for a DBMS. An important question in
a MMDBMS is how to do transactions and recovery in an
efficient way. Some of the proposed algorithms assume that a
(small) stable subset of the main memory exists. This stable
memory for example can be used to place a redo log. Other
algorithms do not assume stable memories, and still use I/O to
write transaction information to a stable storage. These
algorithms, hence, do not eliminate I/O, but minimize it, as the
critical path in a MMDBMS transaction only needs to write
the log; not data pages from the buffer manager [16].

A general MMDB architecture consists of a main memory
implemented via standard RAM and an optional non-volatile
(stable) memory. The main memory holds the primary copy of
the database, while the stable memory holds the log and a
backup copy of the database. A logger process flushes the
logs asynchronously to the disk. Alternatively, an additional
nonvolatile memory may be used as a shadow memory. This
memory is intended to hold updates performed by active
transactions and the tail end of the log that contains
information about those updates [16].

A specific problem in MMDBMS is query optimization.
The lack of I/O as dominant cost factor means that it is much
more difficult in a MMDBMS to model query costs, as they
depend on fuzzy factors like CPU execution cost of a routine.
Therefore, DBMS query optimization tends to make use of
simple cost models that contain “hard” constants obtained.
One challenge in this area is to model the interaction between
coding style, hardware factors like CPU and memory

A Comparative Study of Main Memory
Databases and Disk-Resident Databases

F. Raja, M.Rahgozar, N. Razavi, and M. Siadaty

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

494International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

58
8.

pd
f

architecture and query parameters into a reliable prediction of
main memory execution cost [10][12].

MMDB systems are ideal for applications that require high
throughput and a fast response time. With the increasing
demand for high-performance systems and the steady decrease
in memory cost, MMDBs have become an attractive
alternative to DRDBs.

While meeting the high-performance demand of many real-
time applications, MMDBs are naturally more vulnerable to
failures than conventional DRDBs. Thus, the recovery
component of an MMDB system must be properly designed,
implemented and maintained. Three aspects of the recovery
subsystem serve to ensure that the MMDB can recover from
any failure: logging, check pointing and reloading.

III. FASTDB
FastDB [1] is a highly efficient main memory database

system with realtime capabilities and convenient C++
interface. FastDB is optimized for applications with
dominated read access pattern. High speed of query execution
is provided by the elimination of data transfer overhead and a
very effective locking implementation. The Database file is
mapped to the virtual memory space of each application
working with the database. So the query is executed in the
context of the application, requiring no context switching and
data transfer. Synchronization of concurrent database access is
implemented in FastDB by means of atomic instructions,
adding almost no overhead to query processing. FastDB
assumes that the whole database is present in RAM and
optimizes the search algorithms and structures according to
this assumption. Moreover, FastDB has no overhead caused
by database buffer management and needs no data transfer
between a database file and buffer pool. That is why FastDB
will work significantly faster than a traditional database with
all data cached in buffers pool [1].

FastDB supports transactions, online backup and automatic
recovery after system crash. The transaction commit protocol
is based on a shadow root pages algorithm, performing atomic
update of the database. Recovery can be done very fast,
providing high availability for critical applications. Moreover,
the elimination of transaction logs improves the total system
performance and leads to a more effective usage of system
resources [1].

Although FastDB is optimized in the assumption that
database as a whole fits into the physical memory of the
computer, it is also possible to use it with databases, the size
of which exceeds the size of the physical memory in the
system. In the last case, standard operating system swapping
mechanisms will work. But all FastDB search algorithms and
structures are optimized under the assumption of residence of
all data in memory, so the efficiency for swapped out data will
not be very high.

FastDB is an application-oriented database. Database tables
are constructed using information about application classes.
FastDB supports automatic scheme evaluation, allowing users

to do changes only in one place: in users’ application classes.
FastDB provides a flexible and convenient interface for
retrieving data from the database. A SQL-like query language
is used to specify queries. Such post-relational capabilities as
non-atomic fields, nested arrays, user-defined types and
methods, direct interobject references simplifies the design of
database applications and makes them more efficient. FastDB
uses a notation more popular for object-oriented programming
than for a relational database. Table rows are considered as
object instances, the table is the class of these objects. Unlike
SQL, FastDB is oriented on work with objects, instead of
SQL tuples. So the result of each query execution is a set of
objects of one class [1].

IV. TPC PERFORMANCE BENCHMARK
The Transaction Processing Performance Council (TPC)

has defined a series of benchmark standards for database
systems [14] [15].

In this study, we have tried to implement the same TPC
environment (TPC A and TPC B) on two mentioned database
systems so that we can use it for performance comparisons
such as TPS measurements. In this work, we focus more
particularly on comparing MMDB with DRDB for varying
query loads, with varying size of DBs mentioned in the
following.

V. IMPLEMENTATION OF THE BENCHMARK ENVIRONMENT
In order to compare performance time between MMDB and

DRDB, we implemented a Visual C++.NET interface in
conjunction with FastDB, and then using TPC-A benchmark
and some extra testing benchmarks (to make homogeneous
environments for both kinds of databases), we have used a set
of intensive queries (including select, insert, update and
delete) for varying number of table records and varying
number of updates, implemented within the same benchmark
environment, for both FastDB and MS-SQL databases. Notice
that in the case of update, number of updates is equal to the
value that we set at each run. Also, the recorded time is
calculated from the beginning of an “existence checking” –
which checks whether the produced random
source/destination account/branch exists (or not) -to the end of
the query execution. Random select query is designed so that
it selects for half of the branches, all of the accounts which
have a balance less than the original account balance. The
experiment was performed on a Pentium IV (2.4 GHz) system
with Windows XP as operating system and 256 MB of RAM.

VI. EXPERIMENTAL RESULTS
In this section we describe the measured times in the

different cases of intensive singleton queries (Insert, Update,
and Select) for both MS-SQL and FastDB.

A. Insert Time Measurements
To observe the differences in performance of intensive

insert queries between MS-SQL and FastDB, we ran the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

495International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

58
8.

pd
f

benchmark in insert mode only with the number of target table
records, varying from 1000 to 1000000 records; it should be
mentioned that we cleared the database after each run before
the next run. In this case, we inserted a specified number of
records and measured the time of the whole insertion
operation e.g. 19407 ms for 200000 records. The results of
these measurements are shown in Fig. 1. As shown in this
diagram, by increasing the numbers of records, the required
time for performing update transactions increases. Also it is
noticeable that FastDB insertion time is about 1000 times less
than MS-SQL’s. As a result, it is confirmed that in
applications which require very short response times, (such as
real-time applications), the conventional database systems will
not satisfy the performance requirements as good as MMDBs.

Insert Time

1
10

100
1000

10000
100000

1000000
10000000

0 200000 400000 600000 800000 1000000

of records

mSec(log)

FastDB

Ms-SQL

Fig. 1 Comparison of insert time between FastDB and MS-SQL for

varying number of records

B. Update Time Measurements
For the case of intensive update queries, we performed the

benchmark with constant number of updates and varying
number of records in the target table. As the diagram below
shows, for heavy loads (in contrast with low loads) FastDB
does not perform much better than MS-SQL. Further analyses
are needed to find out the reasons of such degradation in
FastDB performance. We suggest to study the effect of
swapping between main memory and hard disc to realize that
why it could probably have such an important influence on the
performance of FastDB.

Update Time

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

of records

mSec(log)

FastDB
MS-SQL

Fig. 1 Comparison of up date time between FastDB and MS-SQL for
varying number of records in the table and with constant number of

updates

C. Selection Time Measurement
We used a sample range query in this part of the benchmark

that selects the accounts whose account balance is less than an

original amount. Since random access to FastDB performs
similar to the case of update we have chosen range selection
to compare FastDB with MS-SQL in sequential access
queries. In the following diagram (Fig. 3), results of this
benchmark are shown. Here again like the case of update, MS-
SQL has a more regular behavior than FastDB; for less than
150000 records, FastDB has a better response time than MS-
SQL, but after this range, its response time grows
increasingly. This shows the good performance of MS-SQL in
such situations compared to FastDB.

Query Time

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000
of records

mSec(log)

FastDB

MS-SQL

Fig. 2 Comparison of selection time between FastDB and MS-SQL

for varying number of records

VII. DISCUSSION
A wide range of application areas such as real-time/military

applications require very short and predictable response time.
Disks have long response time, and are not suitable as primary
storage media for them. Main Memory has short response
time, and its decreasing cost makes it affordable and suitable
for these applications. Volatility of memory raises concerns
about durability of in-memory data. Main Memory DBMS
manages in-memory data and ensures ACID properties.

In this paper, we have evaluated one of the existing
MMDBs, called FastDB[1], and implemented to compare it
with MS-SQL. As the results show, FastDB is an application-
orienant database, and is optimized for applications with
dominated read access pattern. FastDB assumes that the whole
database is present in RAM and eliminates the overhead time
due to transferring database files to the buffer pool and vice
versa; therefore since FastDB caches all its data in buffer
pool, it works significantly faster than a traditional database
until it does not need any swap between main memory and
hard disc.

VIII. CONCLUSION
Like almost every research also the work presented here

leaves some questions unanswered and even discovers new
questions. Still many issues for future work remain; some of
these open issues would be mentioned here:
• It needs further analysis to find out why FastDB shows

unexpected behavior in heavy loads; it seems to be
necessary to consider a mechanism to reduce the effect of
swapping between main memory and disc in such DBs.

• FastDB uses T-tree for indexing the database and some

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

496International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

58
8.

pd
f

mechanism like “shadow paging” to guarantee quick and
accurate recovery, therefore it is desirable to evaluate
some other MMDB systems and compare them to
FastDB.

ACKNOWLEDGMENT
We would like to thank Konstatin Knizhnik for providing

the latest version of FastDB online and for his e-mail support
and help with development of FastDB applications.

REFERENCES
[1] FastDB: a main-memory database object-relational database system,

Available: http://www.garret.ru/~knizhnik/fastdb/FastDB.htm
[2] Inseon Lee, Heon Y.Yeon, Taesoon Park, “A New Approach for

Distributed Main Memory Database Systems: A Causal Commit
Protocol”, IEICE Trans. Inf. & Syst., Vol.ES7, No.1 January 2004.

[3] Nicholas Carriero, Michael V. Osier, Kei-Hoi Cheung, Peter Masiar,
Perry L. Miller, Kevin White, Martin Schultz, “ Exploring the Use of
Main Memory Database (MMDB) Technology for the Analysis of Gene
Expression Microarray Data”, Technical report, April 2004.

[4] Stefan Manegold, “Understanding, Modeling, and Improving Main-
Memory Database Performance”, November 2002, Available:
www.cwi.nl/htbin/ins1/publications?request=pdf&key=Ma:DISS:02.

[5] Philip Bohannon, Peter McIlroy, Rajeev Rastogi,” Main Memory Index
Structures with FixedSize Partial Keys”, In Proceedings of SIGMOD
Conference, 2001.

[6] S. Manegold, P. A. Boncz, and M. L. Kersten. “Optimizing Main-
Memory Join on Modern Hardware”, IEEE Transactions on Knowledge
and Data Engineering (TKDE), Vol.14, No.4, pp.709–730, July 2002.

[7] J. Rao and K. A. Ross. “Making B+-Trees Cache Conscious in Main
Memory”, Proc ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 475–486, Dallas, TX, USA, May
2000.

[8] Tobin J. Lehman, Michael J. Carey, “A Study of Index Structures for
Main Memory Database Management Systems”, Proc the Twelfth
International Conference on Very Large Data Bases, Kyoto, August,
1986.

[9] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Dennis Leinbaugh,
“Logical and Physical Versioning in Main Memory Databases”, Proc the
23rd VLDB Conference, Athens, Greece, 1997.

[10] Hector Garcia-Molina, Kenneth Salem, “Main Memory Database
Systems: An overview”, IEEE Transactions on Knowledge and Data
Engineering, 4(6):509--516, Dec. 1992.

[11] Piyush Burte, Boanerges Aleman-Meza, D. Brent Weatherly, Rong Wu,
“Transaction Management for a Main-Memory Database”, Available:
http://lsdis.cs.uga.edu/~aleman/mams/csci8370/paper/.

[12] Tobin J. Lehman, Michael J. Carey, “Query Processing in Main Memory
Database Management Systems”, Proceedings of the ACM SIGMOD
International Conference on the Management of Data, 1986, pp.239-250.

[13] Margaret H. Eich, “Main Memory Database Recovery”, Proceedings of
1986 ACM Fall joint computer conference, Pages: 1226 – 1232, 1986.

[14] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Haldar, S. Joshi, A.
Khivesera, H. F. Korth, P. McIlroy, J. Miller, P. P. S. Narayan, M.
Nemeth, R. Rastogi, S. Seshadri, A. Silberschatz, S. Sudarshan, M.
Wilder, and C. Wei. “DataBlitz Storage Manager: Main-Memory
Database Performance for Critical applications”, Proc ACM SIGMOD
International Conference on Management of Data (SIGMOD), pp.519–
520, 1999.

[15] M. Kauffman, "TPC BENCHMARK A Standard Specification", The
Performance Handbook: for Database and Transaction Processing
Systems, Transaction Processing Performance Council (TPC), 1991.

[16] Fremont, “TPC Benchmark B Standard Specification “, Waterside
Associates, Transaction Processing Performance Council, CA., August
1990.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

497International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

58
8.

pd
f

