
Application of soft computing methods for
Economic Dispatch in Power Systems

Jagabondhu Hazra, Member, IEEE, and Avinash Sinha, Member, IEEE,

Abstract—Economic dispatch problem is an optimization prob-
lem where objective function is highly non linear, non-convex,
non-differentiable and may have multiple local minima. Therefore,
classical optimization methods may not converge or get trapped
to any local minima. This paper presents a comparative study of
four different evolutionary algorithms i.e. genetic algorithm, bacteria
foraging optimization, ant colony optimization and particle swarm
optimization for solving the economic dispatch problem. All the
methods are tested on IEEE 30 bus test system. Simulation results
are presented to show the comparative performance of these methods.

Keywords—Ant colony optimization, bacteria foraging optimiza-
tion, economic dispatch, evolutionary algorithm, genetic algorithm,
particle swarm optimization.

I. INTRODUCTION

Economic Dispatch (ED) in Power System deals with the
determination of optimum generation schedule of available
generators so that total cost of generation is minimized within
the system constraints [1]. Several classical optimization tech-
niques such as lambda iteration method, gradient method,
Newton’s method, linear programming, Interior point method
and dynamic programming have been used to solve the basic
economic dispatch problem [2]. Lambda iteration method has
the difficulty of adjusting lambda for complex cost functions.
Gradient methods suffer from the problem of convergence
in the presence of inequality constraints. Newton’s method
is very much sensitive to the selection of initial conditions.
Linear programming approach provides optimal results in
less computational time but results are not accurate due to
linearization of the problem. Interior point method is faster
than linear programming but it may provide infeasible solution
if the step size is not chosen properly. Dynamic programming
suffers from curse of dimensionality.

Most of the classical optimization techniques need deriv-
ative information of the objective function to determine the
search direction. But actual fuel cost functions are non-linear,
non-convex and non-differentiable because of ramp rate limits,
prohibited operating zones, valve point effects and multi-fuel
options [3]. Recently some heuristic techniques such as genetic
algorithm [4], genetic algorithm combined with simulated
annealing [5], evolutionary programming [6], improved tabu
search [7], ant swarm optimization [8] and particle swarm
optimization [9]-[12] have been used to solve the complex
non-linear optimization problem.

Jagabondhu Hazra is with the Department of Power and Energy systems,
SUPELEC, France, e-mail: jagabondhu.hazra@supelec.fr

Avinash Sinha is with the Department of Electrical Engineering, IIT
Kharagpur, India, e-mail: aksinha@ee.iitkgp.ernet.in

In this paper ED problem has been solved using four
different evolutionary algorithms i.e. genetic algorithm (GA),
bacteria foraging optimization (BFO), ant colony optimization
(ACO) and particle swarm optimization (PSO). Performance
of each algorithm for solving the ED problem has been
investigated and simulation results are presented in terms of
accuracy, reliability and execution time.

The paper is organized as follows. Section II formulates
the Economic Dispatch problem, Section III presents the
brief overview of different evolutionary algorithms, Section IV
describes the constrain handling method, Section V presents
the simulation results, and Section VI concludes.

II. PROBLEM FORMULATION

The objective of solving the ED problem is to minimize
the total generation cost of a power system while satisfying
various equality and inequality constraints.

Typically generator cost functions are approximately mod-
eled by quadratic functions. But, actual fuel cost function of
any large turbo generator may be much more complicated
due to valve point loading effect [4]. The Economic Dispatch
problem considering the valve point loading effect can be
expressed as:

Minimize F =
NG∑
i=1

Fgi

=
NG∑
i=1

(pi + qiPgi + riP
2
gi)

+ |ei × sin(fi × (Pgi − Pmini))| (1)

where,
F total generation cost;
Fgi generation cost of generator i;
NG number of generators;
Pgi generation of generator i;
Pmini minimum generation of generator i;
pi, qi, ri cost coefficients of generator i ;
ei, fi coefficients of generator i reflecting

valve point loading effect.

subjected to the following constraints:

Pgi − Pdi − Ploss = 0 (2)

Qgi − Qdi − Qloss = 0 (3)

Pmini ≤ Pgi ≤ Pmaxi (4)

Qmini ≤ Qgi ≤ Qmaxi (5)

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

672International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

where,
Pgi, Qgi real and reactive power generation

at bus i;
Pdi, Qdi real and reactive power demand

at bus i;
Ploss, Qloss total real and reactive power loss;
Pmini, Pmaxi minimum and maximum active power

generation limits of generator i;
Qmini, Qmaxi minimum and maximum reactive

power generation limits of generator i.

III. EVOLUTIONARY ALGORITHMS

This section gives brief description of the evolutionary
algorithms used in this paper as follows:

A. Genetic Algorithm (GA)

In last few decades, GA has been treated as benchmark for
various optimization problems. GA consists of four steps i.e.
representation, initialization, selection and reproduction with
crossover and mutation. Depending on the type of represen-
tation genetic algorithms can be broadly classified into two
groups (i)Binary coded genetic algorithm (BCGA) and (ii)Real
coded genetic algorithm (RCGA).

1) Binary Coded Genetic Algorithm (BCGA): In BCGA,
all the real world problems (phenotype space) are encoded to
binary representation (genotype). Each element of a solution
vector is represented by a binary string zi[zi ∈ [x, y]] =
[a1

i , a
2
i , . . . , a

L
i] ∈ [0, 1]L. The length of the binary string

(chromosome) L depend on how much accuracy is required.
For BCGA, there are several selection methods to form the

parent pool such as proportionate reproduction, tournament
selection, rank selection, genitor selection, etc. In this paper,
binary tournament selection scheme is used because of its less
time complexity [13].

Crossover is a method for sharing information between
chromosomes. It combines the features of parent chromosomes
to form offspring. Commonly used crossover techniques are
one point crossover, two point crossover, n point crossover,
uniform crossover, heuristic crossover, etc. In this paper uni-
form crossover is used to avoid positional bias [14].

Crossover operation makes a big jump to an area somewhere
in between the two parent (explorative) whereas mutation
creates random small diversions near the parent (exploitative).
Typically mutation probability is very low (of the order of
.01).

2) Real Coded Genetic Algorithm (RCGA): BCGA has dif-
ficulties of binary representation when dealing with continuous
search space with large dimensions and improved numerical
precision. RCGA does not have such difficulties. [15]-[16]. In
RCGA genes are represented directly as real numbers and a
chromosome is a vector of floating point numbers. As RCGA
deals directly with real numbers, there is no need of phenotype
to genotype conversion and vice versa. Any decision vector x
is represented as follows: x=[x1, x2, . . . , xn], where n is the
number of parameters to be optimized.

There are different types of crossover techniques for RCGA
such as flat, simple, arithmetic, blend, linear, discrete, logical

FCB (connectives Based Crossover) etc. Among different
crossover techniques blend (with α = .5), linear and logical
FCB crossover techniques outperform the others [15]. In this
paper blend crossover (with α = .5) has been used to maintain
a balance between exploitation and exploration.

There are different types of mutation techniques for RCGA
such as nonuniform, real number creep, continuous modal
mutation, discrete modal mutation. Among them non-uniform
crossover is very effective for RCGA [15]. Therefore, In this
study non-uniform crossover is chosen for RCGA.

B. Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart first introduced the PSO
method [17] motivated by social behavior of organisms such
as fish schooling and bird flocking. PSO is a population based
search technique. Each individual potential solution in PSO
is called particle. Each particle in a swarm fly around in a
multidimensional search space based on its own experience
and experience of neighboring particles.

Let, define the search space S in n-dimension and the
swarm consists of N particles. Let, at instant t, particle i has
its position defined by Xi

t = {xi
1, x

i
2, . . . , x

i
n} and velocity

defined by V i
t = {vi

1, v
i
2, . . . , v

i
n} in variable space S. Velocity

and position of each particle in the next generation (time step)
can be calculated as:

V i
t+1 = w × V i

t + c1 × rand() × (P i
t − Xi

t)
+ c2 × Rand() × (P g

t − Xi
t) (6)

Xi
t+1 = Xi

t + V i
t+1 ∀i = 1, . . . , N (7)

where
N number of particles in the swarm;
w inertia weight;
c1, c2 acceleration constant;
rand(), uniform random value in the range [0,1];
Rand()
P g

t global best at generation t;
P i

t best position that particle i could find so far.

Performance of PSO depends on selection of inertia weight
(w), maximum velocity vmax and acceleration constants (c1,
c2). The effect of these parameters is illustrated as follows:

Inertia weight(w): Suitable selection of weight factor w
helps in quick convergence. A large weight factor facilitates
global exploration (i.e. searching of new area) while small
weight factor facilitate local exploration. Therefore, it is wiser
to choose large weight factor for initial iterations and gradually
smaller weight factor for successive iterations. In standard
PSO linearly decreasing inertia weight w is set as 0.9 at
beginning and 0.4 at the end [18].

Maximum velocity (vmax): With no restriction on the max-
imum velocity of the particles, velocity may become infinitely
large. If vmax is very low particle may not explore sufficiently
and if vmax is very high it may oscillate about optimal solu-
tion. Therefore, velocity clamping effect has been introduced

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

673International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

to avoid the phenomenon of “swarm explosion”[19]. In general
maximum velocity is set as 10-20% of dynamic range of each
variable. Velocity can be controlled within a band as:

vmax = vini − vini − vfin

itermax
× iter (8)

where, vini is initial velocity, vfan is final velocity, iter
is iteration number and itermax is number of maximum
iterations.

Acceleration constants (c1, c2): Acceleration constant c1

called cognitive parameter pulls each particle towards local
best position whereas constant c2 called social parameter pulls
the particle towards global best position. Usually the values
of c1 and c2 are chosen between 0 to 4.

C. Bacteria Foraging Optimization (BFO)

BFO method was invented by Kevin M. Passino [20]
motivated by the natural selection which tends to eliminates
the animals with poor foraging strategies and favor those
having successful foraging strategies. The foraging strategy is
governed by four processes namely Chemotaxis, Swarming,
Reproduction, and Elimination & Dispersal.

1) Chemotaxis: Chemotaxis process is the characteristics
of movement of bacteria in search of food and consists of two
processes namely Swimming and Tumbling. A bacterium is
said to be swimming if it moves in a predefined direction,
and tumbling if it starts moving in an altogether different
direction. Let, j be the index of chemotactic step, k be the
reproduction step and l be the elimination dispersal event. Let,
θi(j, k, l) is the position of ith bacteria at jth chemotactic step,
kth reproduction step and lth elimination dispersal event. The
position of the bacteria in the next chemotactic step after a
tumble is given by:

θi(j + 1, k, l) = θi(j, k, l) + C(i)
Δ(i)√

ΔT (i)Δ(i)
(9)

where
C(i) denotes step size;
Δ(i) random vector;
ΔT (i) transpose of vector Δ(i).

If the health of the bacteria improves after the tumble, the
bacteria will continue to swim to the same direction for the
specified steps or until the health degrades.

2) Swarming: Bacteria exhibits swarm behavior i.e. healthy
bacteria try to attract other bacterium so that together they
reach the desired location (solution point) more rapidly. The
effect of Swarming is to make the bacteria congregate into
groups and move as concentric patterns with high bacterial
density. Mathematically swarming behavior can be modeled

as [20]:

Jcc(θ, P (j, k, l)) =
S∑

i=1

J i
cc(θ, θi(j, k, l))

=
S∑

i=1

[−dattractexp(−wattract)
p∑

m=1

(θm − θm
i)2]

+
S∑

i=1

[−hrepelentexp(−wrepelent)
p∑

m=1

(θm − θm
i)2](10)

where
Jcc the relative distances of each

bacterium from the fittest bacterium
S number of bacteria
p number of parameters to be

optimized
θm position of the fittest bacteria
dattract, wattract, different parameters
hrepelent, wrepelent

3) Reproduction: In this step, population members who
have had sufficient nutrients will reproduce and the least
healthy bacteria will die. The healthier population replaces
unhealthy bacteria which gets eliminated owing to their poorer
foraging abilities. This makes the population of bacteria con-
stant in the evolution process.

4) Elimination and Dispersal: In the evolution process a
sudden unforeseen event may drastically alter the evolution
and may cause the elimination and/or dispersion to a new
environment. Elimination and dispersal helps in reducing the
behavior of stagnation i.e. being trapped in a premature
solution point or local optima.

D. Ant Colony Optimization (ACO)

ACO was invented by Marco Dorigo and colleages [21]-[22]
inspired by the foraging behavior of ant colony. While moving,
each ant lays certain amount of pheromone on the path. Ants
use the pheromone trails to communicate information among
the individuals and based on that each ant decides the shortest
path to follow.

ACO technique has been successfully used for difficult dis-
crete combinatorial optimization problems such as Traveling
Salesman Problem [23], Sequential Ordering [24], Routing in
communication problems [25], etc. In recent years a large
number of literature has been published [26]-[28] where ACO
algorithm has been successfully used for continuous optimiza-
tion problems.

In this paper, ACO algorithm proposed in [27] has been
implemented for the solution of ED problem. The algorithm
consists of four stages: Solution construction, Pheromone
update, Local Search and Pheromone Re-initialization.

1) Solution Construction: In this method, initial position
of each ant i.e. initial solution vectors are generated randomly
in the feasible search region. In each iteration, artificial ant
construct the solution by generating a random number for
each variable using the normal distribution N(μi, σ

2
i). Mean

(μi) and standard deviation (σ2
i) for each variable i changes

with iteration number based on the experience of the colony.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

674International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

This is synonymous to pheromone update in basic ant colony
optimization.

Let x = [x1, . . . , xn] is a solution constructed by any ant
using normal distribution N(μi, σ

2
i), i ∈ {1, . . . , n} associated

with each variable xi. Here n is the number of parameters to
be optimized. After construction of each solution, upper and
lower bound for each parameter is checked and the solution
is modified if it goes out of search space:

xi =

⎧⎨
⎩

ai xi < ai

xi ai ≤ xi ≤ bi

bi xi > bi

(11)

where, bi and ai are upper and lower bound of variable xi

respectively.
2) Pheromone update: Pheromone update procedure com-

posed of pheromone evaporation and pheromone intensifica-
tion. Pheromone initialization is done as follows:

μi(0) = ai + rand(i)(bi − ai)
σi(0) = (bi − ai)/2 (12)

After construction of solutions, pheromone evaporation
phase is performed as follows:

μi(t) = (1 − ρ1)μi(t − 1)
σi(t) = (1 − ρ1)σi(t − 1) (13)

where, t is iteration number and ρ1 ∈ [0, 1] is the evaporation
parameter, a uniform random number between 0 and 1.

The aim of pheromone intensification is to increase the
pheromone value associated with promising solutions. This is
done as follows:

μi(t) = μi(t) + ρ2x
gb

σi(t) = σi(t) + ρ2|xgb − μi(t − 1)| (14)

where, ρ2 ∈ [0, 1] is the intensification parameter, a uniform
random number between 0 and 1 and xgb is the global best
solution found in last (t-1) iteration.

3) Local Search: Local search in the vicinity of current
solution may improve the solution constructed [29]. Local
search is usually made before updating the pheromone. Local
search technique proposed in [27] has been used in this paper.

IV. CONSTRAINTS HANDLING

ED problem is associated with equality and inequality
constraints. In this paper a dynamic penalty function method
is used for constraint handling. A penalty proportional to
the extent of constraint violation is added to the objective
function value if any violation occurs. Penalty methods use a
mathematical function that will increase the objective function
value for any given constrain violation. The penalty function
used in this paper is given by:

F (x) = f(x) + hxH(x) (15)

where,
f(x) is the objective function of the constrained

problem;
hx is the penalty value which is a function of

iteration number;
H(x) is the penalty factor and is given by:

H(x) =
m∑

i=1

(max[0, gi(x)])2 +
n∑

j=1

(hj(x))2 (16)

where,
gi(x) < 0 are the m inequality constraints;
hj(x) = 0 are the n equality constraints.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Test system details

To verify the effectiveness of the evolutionary optimization
techniques, simulations were carried out on IEEE 30 bus test
system [30]. For the test system, minimum and maximum
generation limits and transmission line capacities were taken
from [31]. Generator cost coefficients used in the simulations
are given in the Appendix A.

B. Parameter selection

Evolutionary computation techniques are sensitive to proper
selection of the control parameters. In this paper parameters
were selected based on results of many experiments available
in the literature. Parameters selected for the simulations are as
follows:
GA parameters [10]: Mutation probability, Pm=0.01; α=0.5
and Bit length=16.
ACO parameters: cfth = 0.5.
PSO parameters [33]: Cognitive parameter (C1)=1.5; social
parameter (C2)=2; maximum weight (wmax)=0.8; minimum
weight(wmin)=0.5; initial velocity (Vmax)=0.25; and final ve-
locity (Vmin)=0.02.
BFO parameters [20], [34]: Swimming length Ns= 4; number
of iteration in a chemotactic loop(Nc)=100; no of reproduction
(Nre)=4; no of elimination and dispersal events (Ned)=2;
probability of elimination and dispersal (Ped)=0.25 and step
size C(i)=0.1 ∀i = 1, . . . , S.

Population size for all the methods were chosen as 10.

C. Convergence characteristics

ACO and BFO evaluate the fitness of each ant/bacterium
several times in one iteration. As fitness evaluation is most
time consuming, convergence characteristics of all the methods
were compared with the number of fitness evaluation. Con-
vergence characteristics with the number of fitness evaluation
are shown in Figure 1 for all the methods. Figure 1 shows
that all the methods have good convergence characteristics
for the selected parameters. ACO and BFO converges quickly
than RCGA and BCGA but may not explore good quality
solutions as obtained by RCGA and BCGA. Among all the
methods,PSO converges quickly and explore good quality
solution.

D. Robustness test

Heuristic method may not converge to exactly same solu-
tion at each run owing to their randomness. Therefore, their
performances could not be judged by the results of a single
run. Many trials should be done to reach a useful conclusion

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

675International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

0 200 400 600 800 1000
5.2

5.4

5.6

5.8

6

6.2
x 10

5

Number of cost evaluation

G
en

er
at

io
n

co
st

 (
R

s/
h) aco

bfo

pso

bcga

rcga

(a) 30 bus

Fig. 1. Convergence characteristics of different EAs

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Interval (cost band)

F
re

qu
en

ci
es

ACO

BFO

RCGA

BCGA

PSO

(a) 30 bus

Fig. 2. Comparative solution spreads of different EAs

about the performance of the algorithm. Therefore, to test the
robustness of the evolutionary algorithms, 100 independent
trials were carried out. The best, worst and average minima
obtained by each method are given in Table I. From Table I,
it is clear that average minima obtained by PSO is better than
the others.

To test the robustness of the evolutionary algorithms in a
statistical manner, the interval between worst cost and best cost
among all the solutions is subdivided into 10 equal subintervals
and the frequencies (number) of solution within the specific
cost range are shown in Figure 2. Figure 2 shows that most
of the solution for PSO is in band 1. This shows that PSO
explore better solutions in most of the time. Complete ED
results corrosponding to the best solution obtained by PSO is
given in Table II.

TABLE I
TEST RESULTS FOR 30 BUS SYSTEM FOR 100 INDEPENDENT TRIALS

Method Best Minima Worst minima Avg. minima
BCGA 543836 567113 546273
RCGA 544162 553479 545779
PSO 543818 564629 544500
BFO 549025 566789 550829
ACO 546470 567617 551636

TABLE II
COMPLETE ED RESULTS FOR IEEE 30 BUS TEST SYSTEM

Bus Act. gen. React. gen Volt. mag. Volt. ang.
(MW) (MVAR) (p.u.) (deg.)

1 116.89 14.80 1.06000 0.00
2 69.89 16.65 1.04300 -1.97
3 0.00 0.00 1.02539 -3.91
4 0.00 0.00 1.01664 -4.78
5 49.93 16.39 1.01000 -6.65
6 0.00 0.00 1.01363 -5.54
7 0.00 0.00 1.00417 -6.52
8 25.11 20.23 1.01000 -5.67
9 0.00 0.00 1.05382 -6.99
10 0.00 0.00 1.04965 -9.17
11 24.95 15.22 1.08200 -4.38
12 0.00 0.00 1.05858 -9.28
13 2.40 9.50 1.07100 -9.11
14 0.00 0.00 1.04386 -10.08
15 0.00 0.00 1.04003 -10.07
16 0.00 0.00 1.04781 -9.50
17 0.00 0.00 1.04390 -9.49
18 0.00 0.00 1.03135 -10.45
19 0.00 0.00 1.02932 -10.48
20 0.00 0.00 1.03365 -10.21
21 0.00 0.00 1.03715 -9.67
22 0.00 0.00 1.03763 -9.67
23 0.00 0.00 1.02995 -10.31
24 0.00 0.00 1.02485 -10.28
25 0.00 0.00 1.01983 -10.04
26 0.00 0.00 1.00220 -10.46
27 0.00 0.00 1.02529 -9.64
28 0.00 0.00 1.00945 -5.99
29 0.00 0.00 1.00550 -10.86
30 0.00 0.00 0.99405 -11.74

E. Computational efficiency

Computational efficiencies of all the methods are compared
based on the average CPU time taken to converge the solution.
CPU times taken by each algorithm are given in Table III.
From Table III, it is clear that average convergence time for
PSO is minimum. BCGA takes more time to converge than
RCGA because of conversion from genotype to phenotype or
viceversa.

TABLE III
COMPARISON OF EXECUTION TIME

Test system CPU time (sec)
BCGA RCGA PSO BFO ACO

IEEE 30 Bus 0.543 0.334 0.201 0.289 0.319

VI. CONCLUSIONS

In this paper a comparative study of different evolutionary
techniques to solve the power system ED problem is investi-
gated. From the simulation results presented in this paper it is
clear that solution quality and robustness of RCGA is better
than BCGA. Convergence characteristics of ACO and BFO
are attractive and they converge quickly but solution quality is
not as good as PSO or GA. From all these findings, it can be
concluded that PSO outperforms the others for the chosen set
of parameters for solving the Economic Dispatch problem.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

676International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

APPENDIX A

TABLE IV
GENERATORS COST COEFFICIENTS

UNIT SIZE p q r e f
(MW) Rs/h Rs/MW/h Rs/MW2/h Rs/h 1/MW
≤25 0 2025 1.50 0.0 0.0

26-50 0 1875 1.425 1.2 × 104 0.126
51-100 0 1800 1.35 2.4 × 104 0.063
101-200 0 1650 1.25 3.2 × 104 0.047
201-250 0 1575 1.50 3.0 × 104 0.05
251-300 0 1575 1.25 3.6 × 104 0.042
301-350 0 1500 1.35 3.35 × 104 0.045
351-400 0 1500 1.25 3.85 × 104 0.039
401-500 0 1200 1.50 4.0 × 104 0.038
>500 0 1200 1.00 4.4 × 104 0.034

REFERENCES

[1] B. H. Chowdhury and S. Rahman, “A review of recent advances in
economic dispatch,” IEEE Trans. Power Systems, vol. 5, no. 4, pp. 1248–
1259, Nov. 1990.

[2] A. J. Wood and B. F. Wollenberg, Power generation operation and
control, 2nd ed. John Willy and Sons, 1996.

[3] A. I. Selvakumar and K. Thanushkodi, “A new particle swarm optimiza-
tion solution to nonconvex economic dispatch problems,” IEEE Trans.
Power Systems, vol. 22, no. 1, pp. 42–51, Feb. 2007.

[4] M. A. Abido, “A novel multiobjective evolutionary algorithm for envi-
ronmental economic power dispatch,” Electric Power Systems Research,
vol. 65, no. 1, pp. 71–81, April 2003.

[5] K. P. Wong and Y. W. Wong, “Genetic and genetic/simulated -annealing
approaches to economic dispatch,” Proc. Inst. Elect. Eng., Gen., Transm.,
Distrib., vol. 141, no. 5, pp. 507–513, Sept. 1994.

[6] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary
programming techniques for economic load dispatch,” IEEE Trans.
Evolutionary Computations, vol. 7, no. 1, pp. 83–94, Feb. 2003.

[7] W. M. Lin, F. S. Cheng, and M. T. Tsay, “An improved tabu search for
economic dispatch with multiple minima,” IEEE Trans. Power Systems,
vol. 7, no. 1, pp. 83–94, Feb. 2003.

[8] J. Cai, X. Ma, L. Li, Y. Yang, H. Peng, and X. Wang, “Chaotic ant swarm
optimization to economic dispatch,” Electric Power System Research,
vol. 77, no. 10, pp. 1373–1380, Aug. 2007.

[9] J. B. Park, K. Lee, J. Shin, and K. Y. Lee, “A particle swarm optimization
for economic dispatch with nonsmooth cost functions,” IEEE Trans.
Power Systems, vol. 20, no. 1, pp. 34–42, Feb. 2005.

[10] Z. Gaing, “Particle swarm optimization to solving the economic dispatch
considering the generator constraints,” IEEE Trans. Power Systems,
vol. 18, no. 3, pp. 1187–1195, Aug. 2003.

[11] D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm
optimization for various types of economic dispatch problems,” Int. J
Electr. Power and Energy system, vol. 28, no. 1, pp. 36–42, Jan. 2006.

[12] M. R. Alrashidi and M. E. El-Hawary, “A survey of particle swarm
optimization applications in power system operations,” Electric Power
Components and Systems, vol. 34, no. 12, pp. 1349 – 1357, Dec. 2006.

[13] D. Goldberg and K. Deb, A Comparative Analysis of Selection Schemes
Used in Genetic Algorithms. Morgan Kaufmann, San Mateo, California,
1991, ch. Foundations of Genetic Algorithms, pp. 69–93.

[14] W. M. Spears and K. A. De Jong, “On the virtues of parameterized uni-
form crossover,” in Proceedings of the Fourth International Conference
on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds., Morgan
Kaufmann, 1991.

[15] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling realcoded genetic
algorithms:operators and tools for behavioural analysis,” Artificial Intel-
ligence Review, vol. 12, no. 4, pp. 265–319, 1998.

[16] D. E. Goldberg, “Realcoded genetic algorithms, virtual alphabets, and
blocking,” Complex Systems, vol. 5, pp. 139–167, 1991.

[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Intl. Conf. on Neural Networks, Perth, Australia, 1995, pp. 1942–
1948.

[18] Y. Shi and R. Eberhart, “Parameter selection in particle swarm op-
timization,” in Proceedings of 7th Annual Conference on Evolution
Computation, 1998, pp. 591–601.

[19] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. Morgan
Kaufmann,San Francisco, 2001.

[20] K. M. Passino, “Biomimicry of bacterial foraging for distributed opti-
mization and contro,” IEEE. Control System Magazine, pp. 52–67, June
2002.

[21] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Dipartimento di Elettronica, Politecnico di Milano, IT, 92.

[22] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by
ant colonies,” in proc. of the First European Conf. on Artificial Life.
Elsevier Science, 92, pp. 134–142.

[23] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:optimization
by a colony of cooperating agents,” IEEE Trans. System, Man, and
Cybernetics-Part B, vol. 26, no. 1, pp. 1–13, Feb. 1996.

[24] L. M. Gambardella and M. Dorigo, “An ant colony system hybridized
with a new local search for the sequential ordering problem,” INFORMS
Journal on Computing, vol. 12, no. 3, pp. 237–255, July 2000.

[25] S. Kamali and J. Opatrny, “Posant: A position based ant colony routing
algorithm for mobile ad-hoc networks,” in Proc. Third International
Conference on Wireless and Mobile Communications,ICWMC 07, March
2007.

[26] L. Chen, J. Shen, L. Qin, and J. Fan, A Method for Solving Optimization
Problem in Continuous Space Using Improved Ant Colony Algorithm,
Y. Shi, W. Xu, and Z. Chen, Eds. Springer Berlin / Heidelberg, 2004,
vol. 3327/2005.

[27] M. Kong and P. Tian, Ant Colony Optimization and Swarm Intelligence.
Springer-Verlag, 2006, vol. 4150/2006, ch. A Direct Application of Ant
Colony Optimization to Function Optimization Problem in Continuous
Domain, pp. 324–331.

[28] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” 2006, article in press: Eur. J. Oper. Res.

[29] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization
artificial ants as a computational intelligence technique,” IEEE COM-
PUTATIONAL INTELLIGENCE MAGAZINE, pp. 28–39, 2006.

[30] http://www.ee.washington.edu/research/pstca/.
[31] O. Alsac and B. Stott, “Optimal load flow with steady-state security,”

IEEE Trans. Power Apparatus Systems, vol. PAS-93, no. 3, pp. 745–751,
May 1974.

[32] http://www.pserc.cornell.edu/matpower/.
[33] J. Hazra and A. K. Sinha, “Congestion management using multi objec-

tive particle swarm optimization,” IEEE Trans. Power Systems, vol. 22,
no. 4, pp. 1726–1734, Nov. 2007.

[34] Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for
distributed optimization: Models,principles, and emergent behaviors1,”
Journal of Optimization Theory and Applications, vol. 115, no. 3, pp.
603–628, Dec. 2002.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:4, 2009

677International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
4,

 2
00

9
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
50

4/
pd

f

