
 
Abstract—Very Large and/or computationally complex 

optimization problems sometimes require parallel or high-
performance computing for achieving a reasonable time for 
computation. One of the most popular and most complicate problems 
of this family is “Traveling Salesman Problem”. In this paper we have 
introduced a Branch & Bound based algorithm for the solution of 
such complicated problems. The main focus of the algorithm is to 
solve the “symmetric traveling salesman problem”. We reviewed 
some of already available algorithms and felt that there is need of new 
algorithm which should give optimal solution or near to the optimal 
solution. On the basis of the use of logarithmic sampling, it was found 
that the proposed algorithm produced a relatively optimal solution for 
the problem and results excellent performance as compared with the 
traditional algorithms of this series. 
 

Keywords—Parallel execution, symmetric traveling salesman 
problem, branch and bound algorithm, logarithmic sampling. 

I. INTRODUCTION 
HE traveling salesman problem (TSP) is one of those 
problems to whom the mathematicians and the computer 

scientists had given loads of attention just because of its 
easiness in description and the immense difficulty for the 
solution. In 1920’s this problem was considered initially. In 
simple wording the problem can be described as: “if a 
traveling salesman wants to visit exactly once each of n cities 
starting from the city S (the starting city), also keeping in the 
mind that the cost of traveling from city i to city j is cij , and 
then comes back to the initializing city, what is the minimal 
cost for the entire trip traveling salesman can take”? [1],[2] 
If there are n cities, then a traveling salesman can have of n! 
possible ways to start form any arbitrary city and end on the 
same. Now coming on to get the minimal path we consider an 
undirected graph G = (n, m) consisting of n nodes (cities) and 
m links together with costs for each link is cij. The traveling 
salesman problem (TSP) is to find a tour of minimum cost.   
For this sort of problem there are three types of solutions [5]. 
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A. Exact Algorithms 
Exact algorithms guarantee to get an optimal solution, but 

the only drawback for it is that it takes exponential number of 
repetition of steps. An exact algorithm for TSP it to solve it by 
using branch and bound algorithm which takes care of all 
possible tours and neglects only those about which its sure that 
they could not produce optimal tour [8],[9]. At the end the best 
so far gives the optimal solution. These algorithms have 
complexity in exponentials.  
 

B. Approximation Algorithms 
Algorithms of this type have polynomial worst-case time 

complexity, supplying a suboptimal solution with a guaranteed 
bound on the degree of sub optimality. [8],[13]. Nearest 
neighbor, minimum link and triangle inequality methods are 
examples of approximation algorithms. 
 

C. Heuristic Algorithms 
These algorithms supply suboptimal solutions but they do 

not have any bound on their quality. They do not necessarily 
provide polynomial running times, but on the basis of 
observation and experiments they often provide a successful 
tradeoff between solution optimality of the problem and the 
speed of computing the problem. There are many approaches 
for these sorts of algorithms but out of those two approaches 
that have been used for TSP are: local search and simulated 
annealing.  

“Heuristic algorithms” is of the most important and 
promising research area in which there had been a lot of work 
done in the recent past. “These heuristics, utilizing analogies 
with natural or social systems are used to derive non-
deterministic heuristic methods and obtain very good results in 
NP-hard combinatorial optimization problems”[3]. A heuristic 
is a commonsense rule or set of rules which is used to increase 
the probability of solving some problems. These type of 
algorithms are basically general foundation for the research 
methodologies [5],[6],[7]. 

II.  ANALYSIS OF TRADEOFF BETWEEN OPTIMALITY AND  
SPEED 

The TSP problem belongs to the group of combinational 
optimization problems which are called as NP-complete 
problems.  Distinctively, if a person can get a solution by using 
some good and efficient algorithm which could assure to have 
the optimal solution within a polynomial number of steps, for 
the traveling salesman problem, then it is all possible that 
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efficient algorithms could be found for all other problems in 
the NP-complete class. But to date, no one has been able to 
find a polynomial-time algorithm to solve the Traveling 
Salesman Problem. But it does not mean that it is impossible to 
solve a large instance of this type of problems. Many large 
scale practical optimization problems have been continuously 
solved to optimality repeatedly. In the year 1994, Applegate, 
et. al. gave a solution of a traveling salesman problem that 
produces model for the production of printed circuit boards 
having 7,397 holes (cities), Then, in the year 1998, the same 
authors gave optimal solution of a problem for more that 
13,509 largest cities in the U.S.[1] So,  the computational 
record of specific illustrations of TSP problems coming from 
practical applications is  very much optimistic.  

The question is how mathematicians and the computer 
scientists handle such problems? Obviously, they will not 
consider a brute force approach for such problem. In one 
example of an 16 city traveling salesman problem -- the 
problem of Homer's Ulysses (a Greek hero) attempting to visit 
the cities described in The series of travel exactly once -- there 
are 653,837,184,000 different routes counting the numbers for 
all such roundtrips to find a shortest roundtrip took 92 hours 
while been computed on a powerful workstation[2]. In place of 
enumerating all possibilities of the complete round trips, the 
successful algorithms for the solution of the Traveling 
Salesman Problems have been able to eliminate most of the 
roundtrips that are use less for the computing without the 
consideration, resulting in the decrease of the time taken for 
the computation [4]. We will be concentrating on the 
combination of exact algorithms and Approximations 
algorithms with a hope in decreasing the computational 
complexity and at the same time getting optimal or suboptimal 
solution. 

III.  OUR PROPOSED ALGORITHM 
“Parallel Branch and Bound model using Logarithmic 
Sampling (PBLS) for STSP” 
 

PBLS is an approximation algorithm proposed for finding 
optimal or nearly optimal tours for Symmetric Traveling 
Salesman Problem. Basically the idea lays its foundation on 
the Branch and Bound method which is the most famous and 
widely used [12] approach for solving a given NP-hard discrete 
optimization problem for the best solution. In simpler words B 
& B strategy refers to all state space search methods in which a 
tree search algorithm is basically used. That is the problem of 
finding a minimum tour in a graph G(V,E) starting and ending 
at the same node is reduced to performing search in a tree. This 
tree is known Branch and Bound tree BBT and each node of 
BBT is actually a tour which includes some particular edges or 
does not include some particular edges based upon some 
criteria. Detailed discussion on concepts and various methods 
employed for B & B strategy can be found in [10],[11] and 
[12]. 
 

We have focused upon attacking the STSP for very large 
values and tried to devise an algorithm which can be 
programmed to run in parallel and tries to find optimal tour. To 
reduce the size of our search matrix, we have applied the 
concept of Logarithmic Sampling with the assumption that 
logarithmic sampling for larger number of cities will reduce 
our search space drastically keeping the hope of getting the 
optimal or nearly optimal tour from the reduced set of search 
space set. For this purpose we will take Base-2 Logarithm of 
the total number of cities i.e., let k = log2 n. Now for each city, 
k minimum cost edges are kept separate and thus reducing the 
original n2 element of the search matrix to n � k which in turn 
reduces the (n-1)! / 2 possible tours in the original graph to 
approximately (log2 n) (n – 1) tours only.  

Doing all this makes the algorithm computable in a 
reasonable amount of time on a trivial PC without loosing the 
hope of getting good results, although for very large values of 
n a distributed parallel processing model can also be 
programmed.  
 
Let G (V,E ) be Symmetric Weighted Graph where  
V = {v1, ... , vn} be a set of n cities,  
E = {(r,s) : r,s Є V} be the edge set,  
and Crs = Csr be a cost measure associated with edge (r,s) Є E.  
M be the n � n symmetric matrix containing all edges Є E.  
Let k = log2 n and S be the set containing first k minimum cost 
edges for every city v Є V.  

So taking v Є V be the root of BBT and starting a tour.  
We will now perform a complete search on all the possible 

paths but restricting our search with following rules so as to 
avoid exploring the paths which are not of our interest: 
 
1) K threads will be started exploring different paths spawning 

from the k minimum cost edges of the root v from set S,  
2) Any subsequent nodes in the path during search of every 

thread minimum cost edge will be preferred over others 
when there are more that one children of any node.  

3) Threads will share a common memory location called 
Upper Bound where to place the cost of best tour found so 
far. Initially it will contain infinity. 

4) Whenever a thread computes a path it compares its total cost 
value with Upper Bound. Upper Bound will be assigned this 
path value if it is lesser than the value of upper bound.  

5)  Let Best Path be the list where we maintain the path 
sequence of latest value of Upper Bound. 

6) Search will continue in this way until there is no path 
unexplored. 

7) As the search terminates we will have the best solution 
found so far in the list Best Path with its cost in Upper 
Bound. 

Here is the pseudo code for the function which each of threads 
will be executing. For this purpose we define a structure 
VisitedList which possesses attributes like: 
array of nodes; // Each node is capable of  storing an element of 
set S.  
FirstElement;  // means the root node for which  the thread has 
started executing. 
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TotalCost;   // holds the cost of the tour.   
Count; // used to count the number of cities(nodes) visited so far.   
  
VisitStep(X)  
{ // X is the current node where we are and want to move       
through to find a tour  
 if(VisitedList.Count = = 0) 
 // means if list is emty then add the X in it 
  VisitedList.Add(X);  
 L = GetNextMinLink(X);  
 // It returns next minimum cost node for X  
 from set S and if all K has been returned then 
 return null 
 if(L = = null) 
 // no more branches exists for this node 
      return; 
 else if(VisitedList.Count = = n) 
 // that is a tour is complete 
  return VisitedList; 
 else if(VisitedList.Exists(L) = = true) 
 // node L is already visited 
  VisitStep(X); 
 // so visit other branches of parent of L which is X 
   else 
   { 
    VisitedList.Add(L); 
      // so L is not already visited so add it into list of       
 visited nodes     
    C = Cost(X,L);  
 // get cost of traveling from node X to L  
    VisitedList.UpdateTourCost(C); 
           // add cost C to the cost of tour so far 
    VisitStep(L); 
        // keep visiting to branches recursively unless base       
 conditions are not met 
   } 
}  
 
Here we solve an example to illustrate the process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Let there be 8 cities numbered A-H as shown in fig 1. Its 
symmetric version of TSP problem, so every city will have 
edges connecting it to the all other. So adjacency matrix of the 
 graph of 8 cities along with edges and their weights will be 8 
by 8 matrix as shown in table I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. CONCLUSION 
An n=8 instance of STSP is taken. Its optimal solution was 

known to be 100. We applied our algorithm on that. Table I is 
the original adjacency matrix, and after applying logarithmic 
sampling we got an 8 by 3 matrix as shown in Table II. Fig. 2 
shows the search process in the Table II matrix using the rules 
we mentioned in our algorithm. One can see the second path 
computed was the one required and all the subsequent paths 
will be just ignored as no other will give cost less that 100.  
In worst case if we had to compute all the paths before getting 
the best one even then beauty of applying logarithmic 
sampling is that (n-1)! / 2 possible tours in the original graph 
of STSP when solved using exact algorithms are reduced to 
approximately (log2 n) (n – 1) tours only. So if we talk in terms 
of time complexity comparison between the two approaches, it 
is obvious that O((n-1)! / 2) in case of exact algorithm is 
replaced with O((log2 n) (n – 1) ) plus the sorting cost after 
applying logarithmic sampling for PBLS. A comparison 
between number of possible tours in both the cases is shown in 
the graph in fig. 3. 

III. FUTURE WORK 
As this is a simple implementation requiring threading, a 

more complex version for highly large values of n can be 
implemented. So as our next step we plan to propose a 
distributed parallel processing model using remoting facility 
of dot NET framework. 

TABLE I  
ADJACENCY MATRIX FOR THE GRAPH IN FIG. 1 

 A B C D E F G H 
A 0 11 24 25 30 29 15 15 
B 11 0 13 20 32 37 17 17 
C 24 13 0 16 30 39 29 22 
D 25 20 16 0 15 23 18 12 
E 30 32 30 15 0 9 23 15 
F 29 37 39 23 9 0 14 21 
G 15 17 29 18 23 14 0 7 
H 15 17 22 12 15 21 7 0 

 

Starting Node C 

B 

A 

D 
E 

F 

H G 

 
Fig. 1 Graph showing STSP with 8 cities 

TABLE II 
TABLE I AFTER APPLYING THE LOGARITHMIC 

SAMPLING 

A 11,B 15,G 15,H 

B 11,A 13,C 17,G 

C 13,B 16,D 22,H 

D 12,H 15,E 16,C 

E 9,F 15,D 15,H 

F 9,E 14,G 21,H 

G 7,H 14,F 15,A 
H 7,G 12,D 15,A 
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Fig. 2 Search  process on the  matrix  in table ii. All possible branches will be explored. Here only branch ‘b’ of ‘a’ is shown. Upper bound is maintained after 

the completion of each successful path. 
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Fig. 3 Graph illustrating the comparison of pbls and exact algorithms with 
respect to number of tours 
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