

Abstract—Very Large and/or computationally complex

optimization problems sometimes require parallel or high-
performance computing for achieving a reasonable time for
computation. One of the most popular and most complicate problems
of this family is “Traveling Salesman Problem”. In this paper we have
introduced a Branch & Bound based algorithm for the solution of
such complicated problems. The main focus of the algorithm is to
solve the “symmetric traveling salesman problem”. We reviewed
some of already available algorithms and felt that there is need of new
algorithm which should give optimal solution or near to the optimal
solution. On the basis of the use of logarithmic sampling, it was found
that the proposed algorithm produced a relatively optimal solution for
the problem and results excellent performance as compared with the
traditional algorithms of this series.

Keywords—Parallel execution, symmetric traveling salesman
problem, branch and bound algorithm, logarithmic sampling.

I. INTRODUCTION
HE traveling salesman problem (TSP) is one of those
problems to whom the mathematicians and the computer

scientists had given loads of attention just because of its
easiness in description and the immense difficulty for the
solution. In 1920’s this problem was considered initially. In
simple wording the problem can be described as: “if a
traveling salesman wants to visit exactly once each of n cities
starting from the city S (the starting city), also keeping in the
mind that the cost of traveling from city i to city j is cij , and
then comes back to the initializing city, what is the minimal
cost for the entire trip traveling salesman can take”? [1],[2]
If there are n cities, then a traveling salesman can have of n!
possible ways to start form any arbitrary city and end on the
same. Now coming on to get the minimal path we consider an
undirected graph G = (n, m) consisting of n nodes (cities) and
m links together with costs for each link is cij. The traveling
salesman problem (TSP) is to find a tour of minimum cost.
For this sort of problem there are three types of solutions [5].

Sheikh Muhammad Azam is with the COMSATS Institute of Information

Technology Abbottabad, NWFP, Pakistan. (e-mail: azam@ciit.net.pk &
phone: 0092 333 6541406).

Masood-ur-Rehman is with the COMSATS Institute of Information
Technology Abbottabad, NWFP, Pakistan. (e-mail: masoodqau@ciit.net.pk
& phone: 0092 300 9507971).

Adnan Khalid Bhatti is with the COMSATS Institute of Information
Technology Abbottabad, NWFP, Pakistan. (e-mail: adnankb@ciit.net.pk &
phone: 0092 300 9845504).

Nadeem Daudpota is with the COMSATS Institute of Information
Technology Abbottabad, NWFP, Pakistan. (e-mail: daudpota@ciit.net.pk &
phone: 0092 992 383591).

A. Exact Algorithms
Exact algorithms guarantee to get an optimal solution, but

the only drawback for it is that it takes exponential number of
repetition of steps. An exact algorithm for TSP it to solve it by
using branch and bound algorithm which takes care of all
possible tours and neglects only those about which its sure that
they could not produce optimal tour [8],[9]. At the end the best
so far gives the optimal solution. These algorithms have
complexity in exponentials.

B. Approximation Algorithms
Algorithms of this type have polynomial worst-case time

complexity, supplying a suboptimal solution with a guaranteed
bound on the degree of sub optimality. [8],[13]. Nearest
neighbor, minimum link and triangle inequality methods are
examples of approximation algorithms.

C. Heuristic Algorithms
These algorithms supply suboptimal solutions but they do

not have any bound on their quality. They do not necessarily
provide polynomial running times, but on the basis of
observation and experiments they often provide a successful
tradeoff between solution optimality of the problem and the
speed of computing the problem. There are many approaches
for these sorts of algorithms but out of those two approaches
that have been used for TSP are: local search and simulated
annealing.

“Heuristic algorithms” is of the most important and
promising research area in which there had been a lot of work
done in the recent past. “These heuristics, utilizing analogies
with natural or social systems are used to derive non-
deterministic heuristic methods and obtain very good results in
NP-hard combinatorial optimization problems”[3]. A heuristic
is a commonsense rule or set of rules which is used to increase
the probability of solving some problems. These type of
algorithms are basically general foundation for the research
methodologies [5],[6],[7].

II. ANALYSIS OF TRADEOFF BETWEEN OPTIMALITY AND
SPEED

The TSP problem belongs to the group of combinational
optimization problems which are called as NP-complete
problems. Distinctively, if a person can get a solution by using
some good and efficient algorithm which could assure to have
the optimal solution within a polynomial number of steps, for
the traveling salesman problem, then it is all possible that

Parallel Branch and Bound model using
Logarithmic Sampling (PBLS) for Symmetric

Traveling Salesman Problem
Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti and Nadeem Daudpota

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1752International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

40
2/

pd
f

efficient algorithms could be found for all other problems in
the NP-complete class. But to date, no one has been able to
find a polynomial-time algorithm to solve the Traveling
Salesman Problem. But it does not mean that it is impossible to
solve a large instance of this type of problems. Many large
scale practical optimization problems have been continuously
solved to optimality repeatedly. In the year 1994, Applegate,
et. al. gave a solution of a traveling salesman problem that
produces model for the production of printed circuit boards
having 7,397 holes (cities), Then, in the year 1998, the same
authors gave optimal solution of a problem for more that
13,509 largest cities in the U.S.[1] So, the computational
record of specific illustrations of TSP problems coming from
practical applications is very much optimistic.

The question is how mathematicians and the computer
scientists handle such problems? Obviously, they will not
consider a brute force approach for such problem. In one
example of an 16 city traveling salesman problem -- the
problem of Homer's Ulysses (a Greek hero) attempting to visit
the cities described in The series of travel exactly once -- there
are 653,837,184,000 different routes counting the numbers for
all such roundtrips to find a shortest roundtrip took 92 hours
while been computed on a powerful workstation[2]. In place of
enumerating all possibilities of the complete round trips, the
successful algorithms for the solution of the Traveling
Salesman Problems have been able to eliminate most of the
roundtrips that are use less for the computing without the
consideration, resulting in the decrease of the time taken for
the computation [4]. We will be concentrating on the
combination of exact algorithms and Approximations
algorithms with a hope in decreasing the computational
complexity and at the same time getting optimal or suboptimal
solution.

III. OUR PROPOSED ALGORITHM
“Parallel Branch and Bound model using Logarithmic
Sampling (PBLS) for STSP”

PBLS is an approximation algorithm proposed for finding
optimal or nearly optimal tours for Symmetric Traveling
Salesman Problem. Basically the idea lays its foundation on
the Branch and Bound method which is the most famous and
widely used [12] approach for solving a given NP-hard discrete
optimization problem for the best solution. In simpler words B
& B strategy refers to all state space search methods in which a
tree search algorithm is basically used. That is the problem of
finding a minimum tour in a graph G(V,E) starting and ending
at the same node is reduced to performing search in a tree. This
tree is known Branch and Bound tree BBT and each node of
BBT is actually a tour which includes some particular edges or
does not include some particular edges based upon some
criteria. Detailed discussion on concepts and various methods
employed for B & B strategy can be found in [10],[11] and
[12].

We have focused upon attacking the STSP for very large
values and tried to devise an algorithm which can be
programmed to run in parallel and tries to find optimal tour. To
reduce the size of our search matrix, we have applied the
concept of Logarithmic Sampling with the assumption that
logarithmic sampling for larger number of cities will reduce
our search space drastically keeping the hope of getting the
optimal or nearly optimal tour from the reduced set of search
space set. For this purpose we will take Base-2 Logarithm of
the total number of cities i.e., let k = log2 n. Now for each city,
k minimum cost edges are kept separate and thus reducing the
original n2 element of the search matrix to n � k which in turn
reduces the (n-1)! / 2 possible tours in the original graph to
approximately (log2 n) (n – 1) tours only.

Doing all this makes the algorithm computable in a
reasonable amount of time on a trivial PC without loosing the
hope of getting good results, although for very large values of
n a distributed parallel processing model can also be
programmed.

Let G (V,E) be Symmetric Weighted Graph where
V = {v1, ... , vn} be a set of n cities,
E = {(r,s) : r,s Є V} be the edge set,
and Crs = Csr be a cost measure associated with edge (r,s) Є E.
M be the n � n symmetric matrix containing all edges Є E.
Let k = log2 n and S be the set containing first k minimum cost
edges for every city v Є V.

So taking v Є V be the root of BBT and starting a tour.
We will now perform a complete search on all the possible

paths but restricting our search with following rules so as to
avoid exploring the paths which are not of our interest:

1) K threads will be started exploring different paths spawning

from the k minimum cost edges of the root v from set S,
2) Any subsequent nodes in the path during search of every

thread minimum cost edge will be preferred over others
when there are more that one children of any node.

3) Threads will share a common memory location called
Upper Bound where to place the cost of best tour found so
far. Initially it will contain infinity.

4) Whenever a thread computes a path it compares its total cost
value with Upper Bound. Upper Bound will be assigned this
path value if it is lesser than the value of upper bound.

5) Let Best Path be the list where we maintain the path
sequence of latest value of Upper Bound.

6) Search will continue in this way until there is no path
unexplored.

7) As the search terminates we will have the best solution
found so far in the list Best Path with its cost in Upper
Bound.

Here is the pseudo code for the function which each of threads
will be executing. For this purpose we define a structure
VisitedList which possesses attributes like:
array of nodes; // Each node is capable of storing an element of
set S.
FirstElement; // means the root node for which the thread has
started executing.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1753International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

40
2/

pd
f

TotalCost; // holds the cost of the tour.
Count; // used to count the number of cities(nodes) visited so far.

VisitStep(X)
{ // X is the current node where we are and want to move
through to find a tour
 if(VisitedList.Count = = 0)
 // means if list is emty then add the X in it
 VisitedList.Add(X);
 L = GetNextMinLink(X);
 // It returns next minimum cost node for X
 from set S and if all K has been returned then
 return null
 if(L = = null)
 // no more branches exists for this node
 return;
 else if(VisitedList.Count = = n)
 // that is a tour is complete
 return VisitedList;
 else if(VisitedList.Exists(L) = = true)
 // node L is already visited
 VisitStep(X);
 // so visit other branches of parent of L which is X
 else
 {
 VisitedList.Add(L);
 // so L is not already visited so add it into list of
 visited nodes
 C = Cost(X,L);
 // get cost of traveling from node X to L
 VisitedList.UpdateTourCost(C);
 // add cost C to the cost of tour so far
 VisitStep(L);
 // keep visiting to branches recursively unless base
 conditions are not met
 }
}

Here we solve an example to illustrate the process.

Let there be 8 cities numbered A-H as shown in fig 1. Its
symmetric version of TSP problem, so every city will have
edges connecting it to the all other. So adjacency matrix of the
 graph of 8 cities along with edges and their weights will be 8
by 8 matrix as shown in table I.

II. CONCLUSION
An n=8 instance of STSP is taken. Its optimal solution was

known to be 100. We applied our algorithm on that. Table I is
the original adjacency matrix, and after applying logarithmic
sampling we got an 8 by 3 matrix as shown in Table II. Fig. 2
shows the search process in the Table II matrix using the rules
we mentioned in our algorithm. One can see the second path
computed was the one required and all the subsequent paths
will be just ignored as no other will give cost less that 100.
In worst case if we had to compute all the paths before getting
the best one even then beauty of applying logarithmic
sampling is that (n-1)! / 2 possible tours in the original graph
of STSP when solved using exact algorithms are reduced to
approximately (log2 n) (n – 1) tours only. So if we talk in terms
of time complexity comparison between the two approaches, it
is obvious that O((n-1)! / 2) in case of exact algorithm is
replaced with O((log2 n) (n – 1)) plus the sorting cost after
applying logarithmic sampling for PBLS. A comparison
between number of possible tours in both the cases is shown in
the graph in fig. 3.

III. FUTURE WORK
As this is a simple implementation requiring threading, a

more complex version for highly large values of n can be
implemented. So as our next step we plan to propose a
distributed parallel processing model using remoting facility
of dot NET framework.

TABLE I
ADJACENCY MATRIX FOR THE GRAPH IN FIG. 1

 A B C D E F G H
A 0 11 24 25 30 29 15 15
B 11 0 13 20 32 37 17 17
C 24 13 0 16 30 39 29 22
D 25 20 16 0 15 23 18 12
E 30 32 30 15 0 9 23 15
F 29 37 39 23 9 0 14 21
G 15 17 29 18 23 14 0 7
H 15 17 22 12 15 21 7 0

Starting Node C

B

A

D
E

F

H G

Fig. 1 Graph showing STSP with 8 cities

TABLE II
TABLE I AFTER APPLYING THE LOGARITHMIC

SAMPLING

A 11,B 15,G 15,H

B 11,A 13,C 17,G

C 13,B 16,D 22,H

D 12,H 15,E 16,C

E 9,F 15,D 15,H

F 9,E 14,G 21,H

G 7,H 14,F 15,A
H 7,G 12,D 15,A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1754International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

40
2/

pd
f

REFERENCES

[1] Applegate, R.E. Bixby, V. Chvatal, and W. Cook (1994) "Finding cuts
in the TSP" a preliminary report distributed at The Mathematical
Programming Symposium, Ann Arbor, Michigan, August 1994.

[2] D. Applegate, R.E. Bixby, V. Chvatal, and W. Cook (1998) "On the
solution of traveling salesman problems" Documenta Mathematica -
Extra Volume, ICM III 645-658.

[3] Irina Dumitrescu and Thomas St¨utzle,” Combinations of Local Search
and Exact Algorithms”, S. Cagnoni et al. (Eds.): EvoWorkshops 2003,
LNCS 2611, pp. 211–223, 2003.

[4] Chantal Korostensky, and Gaston H. Gonnet, “Using traveling salesman
problem algorihms for evolutionary tree consturction” Institute of
scientific computing , 8092 ETH Zurich, Switzerland, January 23,2000.

[5] Bapna, S. De, S.“An intelligent search strategy for solving the
symmetric traveling salesman problem” Systems, Man, and Cybernetics,
1991. 'Decision Aiding for Complex Systems, Conference Proceedings.,
1991 IEEE International Conference, pp579-583 vol.1

[6] Jano I . van Hemert and Neil B. Urquhart, “Phase transition properties
of clustered traveling salesman problem instances generated with
evolutionary computation” Parallel Problem Solvers from Nature VIII,
pages 150–159, 2004.

[7] Chuan-Kang Ting; Sheng-Tun Li; Chungnan Lee; “TGA: a new
integrated approach to evolutionary algorithms” Evolutionary
Computation, 2001. IEEE Proceedings of the 2001 Congress,Volume 2,
27-30 May 2001 PP:917 – 924.

[8] Chris Walshaw, “A Multilevel Lin-Kernighan-Helsgaun Algorithm for
the Travelling Salesman Problem” Mathematics Research Report:
01/IM/80, September 27, 2001.

[9] Irina Dumitrescu and Thomas St¨utzle, “Combinations of Local Search
and Exact Algorithms”S. Cagnoni et al. (Eds.): EvoWorkshops 2003,
LNCS 2611, pp. 211–223, 2003.

[10] Freisleben, B.; Merz, P.; “A genetic local search algorithm for solving
symmetric and asymmetric traveling salesman problems” Evolutionary
Computation, 1996., Proceedings of IEEE International Conference
on,20-22 May 1996 Page(s):616 – 621.

[11] Jens Clausen, “Branch and bound algorithms principles and examples ”,
department of comp sc., university of Copenhagen, Universitetsparken
1, DK-2100 Corpenhagen, Denmark.(March 12,1999)

[12] R. C. T. Lee, R. C. Chang, S.S. Tseng, and Y. T. Tsai, An Introduction
to the Design and Analysis of Algorithms, 2nd Ed, FLAG Publishers,
2002.

[13] Grigni, M.; Koutsoupias, E.; Papadimitriou, C.; “An approximation
scheme for planar graph TSP” Foundations of Computer Science, 1995.
Proceedings., IEEE ,36th Annual Symposium,23-25 Oct. 1995 pp:640 –
645.

Fig. 2 Search process on the matrix in table ii. All possible branches will be explored. Here only branch ‘b’ of ‘a’ is shown. Upper bound is maintained after

the completion of each successful path.

Number of Tours in Exact Algorithm vs. PBLS

1.5063E+213

1073741824

4.65661E+21

2187

1.05567E+49

2.1255E+107

6.53837E+11

2520

4.11142E+33

9.91304E+86

1
1E+07
1E+14
1E+21
1E+28
1E+35
1E+42
1E+49
1E+56
1E+63
1E+70
1E+77
1E+84
1E+91
1E+98

1E+105
1E+112
1E+119
1E+126
1E+133
1E+140
1E+147
1E+154
1E+161
1E+168
1E+175
1E+182
1E+189
1E+196
1E+203
1E+210
1E+217

8 16 32 64 128

Number of Cities

Po
ss

ib
le
 T

ou
rs

 fo
r T

ra
ve

lli
ng

 S
al
es

m
an

 Tours using Logarithmic Sampling
Tours using Exact Algorithms

Fig. 3 Graph illustrating the comparison of pbls and exact algorithms with
respect to number of tours

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1755International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

40
2/

pd
f

