
Abstract— In this paper, we propose a novel method for subspace 
estimation used high resolution method without 
eigendecomposition where the sample Cross-Spectral Matrix 
(CSM) is replaced by upper triangular matrix obtained from LU 
factorization. This novel method decreases the computational 
complexity.  The method relies on a recently published result on 
Rank-Revealing LU (RRLU) factorization. Simulation results 
demonstrates that the new algorithm outperform the Householder 
rank-revealing QR (RRQR) factorization method and the MUSIC 
in the low  Signal to Noise Ratio (SNR) scenarios.
Keywords— Factorization, Localization, Matrix, Signal 

subspace. 

I. INTRODUCTION

he high resolution methods and spectrum analysis are 
search subjects motivated several works in various 

domains e.g. telecommunications, underwater acoustics, 
geophysics, speech processing or the ancillary medical 
domain. The first technical applications of array processing 
are in radar [1] and sonar [2] to localize sources and to delete 
the interferences. Recently, numeric communications were the 
object of all the attentions. There are also applications in 
seismology [3], in biomedical imagery, etc. The most popular 
method is MUSIC [4], it requires singular values 
decomposition (SVD) or the eigenvalues decomposition 
(EVD) to estimate the subspaces, it is complex to implement 
in certain applications; e.g. in underwater acoustics, where it 
can have many sensors. The minimum-norm algorithm is 
proposed by Kumaresan and al. in [5], this algorithm is a 
subspace based on the DOA estimation method and allows 
estimation of the DOA of signals in known number, from 
signals sources received on the array of the sensors, by 
minimizing the projection of the directional vector on the 
vector belonging to the noise subspace. In recent years, 
several methods which obtain the subspaces without EVD or 
without SVD are proposed in the literature [4], [6]. The 
implemented methods based on the subspaces definition 
require essentially two calculation stages. First step, relaying 
on the decomposition of the observation space into two 
projection subspaces. The second calculation step consists in 
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extracting the angles of arrival of sources or the signals 
frequencies from the estimators built with signal subspace or 
noise subspace. The remainder of the paper is as follows. 
Section 2 briefly presents the structure of signal subspace 
problems. Section 3 presents our algorithm and how a RRLU 
factorization can be used in the signal subspace approach. In 
section 4, a class of DOA estimators are briefly recalled and 
we evaluate the numerical complexities. The efficiency of the 
new algorithm corresponding to the RRLU factorization 
method is studied using the simulated data in the presence of 
the spatially correlated noise with limited length or banded 
CSM noise. Finally this paper provides a conclusion and 
summary of results.  

II. PROBLEM FORMULATION

Consider an array of N sensors receiving the wavefield 
generated by P NP  narrow-band sources in the presence 

of an additive noise. The received signal vector fx  is 

sampled and the FFT algorithm is used to transform the data 
into the frequency domain. Without loss generality we will 
omit, in all the continuation of this paper, the frequency f. We 
present these samples by 

bsAx                    (1)  
where 1PCs  is the vector of the complex envelopes of the 
source signals, 1NCb  is an additive noise, 

PN

P CaaA ,...,1
 is the matrix of the steering 

vector
pa , and 

p
, Pp ,...,1  is the direction of arrival 

(DOA) of signal p measured with respect to the normal of the 
array. The CSM of received signals is:

b

Hf AA s
              (2) 

where HE xx , Hsss
 and H

b E bb  is the noise 

spectral matrix which depends on the estimation method and 
used assumptions. H)(  is the Hermitian transposition of )( .

The performances of the high standard resolution algorithms 
degrade when the noise is spatially correlated. Several 
techniques have been proposed in order to improve them. 
Note that in [7] the DOA  are computed from the roots of  

aVVa HHf               (3) 

where V is a basis for the nullspace of 
b

. This algorithm 

needs the knowledge of the noise spectral matrix.  Rank 
Revealing Triangular Factorizations 

The LU or QR factorization algorithms are the most 
important and popular methods used for estimating the 
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eigenvalues and the eigenvectors. The upper triangular matrix 
can be obtained either from the LU factorization or the QR 
factorization[8, 9, 10], which allows extraction from the CSM, 
needed information to estimate the noise subspace. The rank 
of CSM is related to its eigenvalues 

N,...,, 21

since Prank  if 0...... 121 NPP
.

A. Rank-Revealing QR factorization 

In this section, the algorithm requires an initial 
triangularization of the matrix, which can be carried out by 
means of the QR factorization. This method is based upon a 
RRQR factorization [8], [10]-[11] which allows extraction 
from the CSM, necessary information to estimate the noise 
subspace or the signal subspace. One can identify the PN

smallest singular values of  and if 
221 RP

 its RRQR 

factorization is [8], [10], [12]: 
P

PN

N-PP

22

1211

R0

RR
Q               (4) 

where the NN  matrix Q has orthonormal columns. If we 
have such a factorization, then [7] 

FIRRY
T

N 12
1

11
               (5) 

is a basis of noise subspace, where F is a diagonal scaling 
matrix chosen such that the columns of 

NY  have unit norm.  

B. Rank-Revealing LU factorization 

In [8], [10]-[11] two theoretical approximations for 
computing the numerical rank of a triangular matrix are 
introduced. This triangular matrix can be obtained by means 
of the LU factorization. Our implementation incorporates 
several improvements over the QR algorithm. Specifically, an 
incremental condition estimator is employed to reduce the 
implementation cost. The principle is based on a RRLU 
factorization [8], [10]-[11] which allows extraction from the 
CSM, necessary information to estimate the subspace noise. 
Assume  has numerical RRLU factorization. Then the 
factorization

P

PN

N-PP

22

1211

U0

UU
L               (6) 

where L is unit lower triangular of dimension NN . The
decomposition (6) is called to be an RRQR factorization i.e. 
the separation of the eigenvalue spectrum of  into groups of 
“large” and “small” eigenvalues shows up in U  as a small 
trailing block. The RRQR factorization reveals the numerical 
rank of  by having a well-conditioned leading 
submatrix

11U , and a trailing submatrix 
22U  of small norm. 

According to [8], [10], 
2221 UP
. With such 

factorization, we verify that  

22

12
1

11

22

1211

U

0

I

UU

U0

UU           (7) 

We deduct that EIUUZ
T

N 12
1

11
 is a basis of noise 

subspace, where E is a matrix chosen such that the columns of 

NZ  have unit norm. So, the matrix E is 

IUUUUE 12
1

111112
HH , where E  is a diagonal scaling matrix 

chosen such that the columns of 
NZ  have unit norm. Note that 

NY  and 
NZ  are not an orthonormal basis, as was provided by 

the SVD method. One could obtain an orthonormal basis from 

NY  by the Gram-Schmidt orthogonalization process [7]. 

However, in general, this is not necessary since the roots of 
f  from Eq. (3) are identical for all bases 

NY  and all bases 

NZ  of the noise subspace. Thus, by using a rank-revealing 

factorization, we can obtain the relevant subspace information 
without resorting to the more expensive SVD or eigenvalue 
decompositions. An important case where the conditions of 
application of the previous theorems (Eqs. (4) and (6)) are 
verified is that where the matrix  is symmetric defined 

positive.

III. LOCALIZATION METHODS

In this section a class of DOA estimators are briefly 
recalled. A relationship between the different estimators is 
established. Let 

NPPN uuuU ,...,, 21
 be the PNN

matrix consisting of the eigenvectors associated to the 
PN  smallest PN  eigenvalues of the CSM .

A. Brief recall of the Minimum-norm method 

The norm-minimum algorithm allows estimation of the 
DOA of signals in known number P, from signals measured 
on N sensors, by minimizing the spectral estimation: 

1

1eUUa H

NN

H

MNF             (8) 

where
1e  denotes an 1N  vector with all zero elements 

except the first one, equal to unity T0,...,0,11e . The 

minimum-norm algorithm estimates the DOA as the location 
of P, the highest peaks of 

MNF .

B. Brief recall of the MUSIC method 

MUSIC relies on the decomposition of the observation space 
into two orthogonal subspaces, the signal subspace and the 
noise subspace. The method for source bearing estimation 
then consists in finding the DOA’s  as the 

arguments of the maxima of the function 
MUSICF  defined by: 

1
aUUa H

NN

H

MUSICF            (9) 

It has been shown that 
MUSICF  has maximum points at 

round  in 
P,...,1 . Therefore we can estimate the DOA 

by taking the local maximal points of 
MUSICF .

C. Localisation methods based on RRQR or RRLU 

factorizations 

The DOA of signal sources are given by the minima of one 
of the following functions:  

2
1

aYYa H

NN

Hg     or  2
1

aZZa H

NN

Hh    (10) 
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where H

NN YY  and H

NN ZZ  are the orthogonal projector upon 

the noise subspace. 

D. Comparison of algorithms complexities  

To evaluate the numerical complexity of the LU 
factorization algorithm, the Householder algorithm for the QR 
method and the MUSIC method, one counts the number of 
operations needed. We present in this section some examples 
of simulation to illustrate the performances of algorithms 
presented in the previous sections. It is clear that a 
comparative study detailed by these algorithms has to take 
into account the speed of convergence, performances in 
permanent state, precision of estimations and robustness. To 
compare the algorithms of the signal subspace, the same 
procedure of search for the DOA is used for all the 
algorithms. One supposes that errors concerning this search 
for the DOA show themselves in the same way on various 
compared algorithms. The CSM requires 3N  operations to 
obtain subspaces by means of a classic EDV. This subspaces 
estimation technique is not very reliable when sources are not 
very spaced out. The of the RRQR algorithm factorization is 
successful. It is difficult to estimate the exact complexity 
necessary for the implanting of the algorithm, given that it 
appeals to several external subroutines. By comparing the 
performances of the RRLU factorization algorithm with 
MUSIC and RRQR factorisation algorithms, we notice that 
algorithm of RRLU factorization turns out to be more reliable. 

This algorithm allows reduce of its complexity to 3
3
1 N

operations from 3
3
2 N  [9]. The complexities required by  

NU in MUSIC is 3N  [13]. So the LU method is 

approximately tow times faster than the QR method.  

IV. SIMULATION RESULTS

In this section, we describe experiments for localization of 
the sources using the QR factorization algorithm and the 
proposed algorithm introduced in section 3. In our 
simulations, we assumed a uniformly spaced linear array of 
seven sensors separated by half a wavelength and also 
assumed that the additive noise was stationary, uncorrelated 
with the signals sources, Gaussian with zero-mean. The 
number of snapshots taken was 100 and the number of 
observations was equal to 100. We considered two 
uncorrelated sources with equal power and SNR, impinging 
from 12° and 16°. We assume that the estimate of the number 
of sources is correct (equal to 2). 

A. Experiment 1:  uncorrelated noise  

In practice, when the noise is spatially not white, its CSM 
deviates appreciably from the diagonal scaling matrix. 

FIG. 1 Localisation method with: (1) - RRLU, (2) - RRQR and (3) – 
MUSIC, where SNR = 16dB.   

The CSM of uncorrelated noise 
b
 used in our first 

experiment is:  I1691.0b
, where I is an identity matrix. 

Fig. 1 shows the obtained localization results of the tow 
simulated sources. MUSIC and minimum-norm methods 
localized the two sources better , where the noise is white, 
than the QR and LU methods.  

B. Experiment 2: correlated noise 

The localization, where the noise is correlated from sensor 
to sensor, is the delicate problem for MUSIC, minimum norm 
and QR factorization methods. An example of the 

b
 , used 

in this section, is:   

Kmisimi
b

mij
e

mi
mi

b
0),(

2/2),(
            (11) 

where K (K<N) is the length of the spatial correlation. Our 
examples are established in cases where the noise is correlated 
( 2 = 1,  = 0.7 and K = 2). Figs. 2 shows the results of the 
localisation with MUSIC algorithm, QR factorization method 
and the proposed LU factorization method. The performances 
of the MUSIC and RRQR factorization method degrade. 
Indeed, the proposed method reduces the computational load.  

FIG. 2 Localisation methods with: (1) - RRLU, (2) - RRQR and (3) - MUSIC, 
with SNR = 3dB.

The MUSIC and RRQR factorization methods can distinguish 
between the two sources. On the other hand, the proposed 
method is realized by the projection on the signal-subspace to 
eliminate the components of the noise which are orthogonal in 
the signal sources. In order to point out the improvement of 
the localization of the sources based on the RRLU 
factorization of the CSM, our second experiment is carried 

TABLE I
ALGORITHMS COMPLEXITIES FOR THE SUBSPACES ESTIMATION

MUSI
C

RRQR factorization RRLU factorization

3N 3
3
2 N 3

3
1 N
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out. With the same former signals, with the aim to study and 
to compare the performance of our algorithm to the classical 
minimum-norm method. Fig. 3 shows the obtained 
localization results of the two simulated sources. We can 
conclude that the RRLU factorization of the CSM of the 
received data have improved the spatial resolution. Indeed, the 
two sources are perfectly localized. The obtained results show 
the performance of our algorithm to localize the narrowband 
uncorrelated sources very faster than minimum norm method. 
To estimate the performances of our method of proposed 
location, we define the square root of the error quadratic mean 
that one notes SREQM:   

2
1

1

2
ˆ1 P

p

pp
P

SREQM
             (12) 

FIG. 3 Localisation with: (__) minimum-norm; (--) proposed RRLU 
factorization method. SNR= 4dB 

FIG. 4 Various techniques std location according to SNR: (1) MUSIC; (2) 
QR method; (3) proposed algorithm.  

To compare the performances of the method which we 
propose to classic algorithms, we calculated standard 
deviation for every operator of location by using expression 
(12). The study is based on the analysis of synthetic signals. 
We were interested in the variations of standard deviation 
(std) according to the signal on noise ratio (SNR=- 5, …, 
15dB). 
Not that where Signal on Noise Ratio (SNR) is high, the 
standard deviation of estimation is even when one applies our 
algorithm which uses RRLU factorization by comparing it 
with the techniques of coherent signal subspace based on the 
MUSIC method and RRQR factorization. On the other hand, 
we confirm improvement due to the RRLU factorization 
included in our algorithm. We conclude that our method 
presents the weakest values of SREQM in every case studied. 

V. CONCLUSION

We presented in this paper methods which use the  
subspaces definition to estimate the DOA. These methods put 
into action operations on the CSM of signals, received on 
sensors' array. Besides, their principle remains valid what ever 
the geometry of the array. We have improved the high 
resolution methods for locating the narrow-band sources. This 
improvement is based on the recent results of the linear 
algebra concerning the LU factorization of the CSM. A major 
advantage of our method, it does not require the 
eigendecomposition of the CSM. The upper triangular matrix, 
obtained by RRLU factorization, has been used to improve the 
RRQR factorization method complexities. The RRLU method 
is approximately two times faster than the QR factorization 
method .  
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