Impact of GCSC on Measured Impedance by Distance Relay in the Presence of Single Phase to Earth Fault

M. Zellagi, A. Chaghi

Abstract—This paper presents the impact study of GTO Controlled Series Capacitor (GCSC) parameters on measured impedance (Z_{meas}) by MHO distance relays for single transmission line high voltage 220 kV in the presence of single phase to earth fault with fault resistance (R_f). The study deals with a 220 kV single electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by series Flexible AC Transmission System (FACTS) i.e. GCSC connected at midpoint of the transmission line. The transmitted active and reactive powers are controlled by three GCSC’s. The effects of maximum reactive power injected as well as injected maximum voltage by GCSC on distance relays measured impedance is treated. The simulations results investigate the effects of GCSC injected parameters: variable reactance (X_{GCSC}), variable voltage (V_{GCSC}) and reactive power injected (Q_{GCSC}) on measured resistance and reactance in the presence of earth fault with resistance fault varied between 5 to 50 Ω for three cases study.

Keywords—GCSC Parameters, Transmission line, Earth fault, Symmetrical components, Distance protection, Measured impedance.

I. INTRODUCTION

Fault currents have an important influence on the design and operation of equipment and power systems. In Algerian Company of Electrical and Gas, more than 83% of the occurred faults on 220 and 400 kV overhead transmission networks are single phase to ground type. However, phase to phase faults are the most common fault type after single phase to ground faults. Distance protection relays have been widely applied as the primary protection in high voltage transmission lines due to their simple operating principle and capability to work independently under most circumstances [1-2].

The basic operation principle of distance relay is based on the fact that the line impedance is fairly constant with respect to the line length. However, the implementation of FACTS Controllers in power system transmission for enhancing the power system controllability and stability have introduced new power system issues in the field of power system protection that must be considered and analyzed [3]. Some of the concerns include the rapid changes in line impedance and the transients introduced by the fault occurrence with the associated control action of the FACTS Controllers. The presence of the FACTS devices in the faulted loop introduces changes to the line parameters seen by the distance relay.

The effect of FACTS device would affect both the steady state and transient trajectory of the apparent impedance seen by distance relays due to the fast response time of FACTS Controllers with respect to that of the protective devices. The impact of FACTS devices on distance protection varies depending on the type of FACTS device used, the application for which it is applied and the location of the FACTS device in the power system.

The effect of different types of series FACTS devices on distance protection of transmission lines has been reported: for Thyristor Controlled Series Capacitor (TCSC) in [4-7] and for Static Synchronous Series Compensator (SSSC) in [8-9], for shunt FACTS devices the type Static Synchronous Compensators (STATCOM) is study in [10-12] and for Static Var Compensators (SVC) in [13-14]. However, the authors have not come across any reported work on mitigation of the impact of midpoint series FACTS compensated transmission lines on distance protection.

In this paper we report the impact of variation of maximum reactive power injected by GCSC for three case study in the presence phase to earth faults (phase A) at the end of the transmission line with resistance fault (R_f). The GCSC is located on 220 kV midline of the Algerian transmission line between substations Ain M’lila and Khenechla which is protected by MHO distance relay installed at busbar A. The study concerns the impact of injected parameters (X_{GCSC}, V_{GCSC} and Q_{GCSC}) of the GCSC on the measured impedance of by distance relay R_{seen} and X_{seen} for protected transmission line in presence of resistance fault which varies between 5 to 50 Ω.

II. REACTIVE POWER ON TRANSMISSION LINE IN PRESENCE GCSC

The compensator GCSC mounted on figure 1.a is the first that appears in the family of series compensators. It consists of a capacitance (C) connected in series with the electrical transmission line and controlled by a valve-type GTO thyristors mounted in anti-parallel and controlled by an extinction angle (γ) varied between 0° and 180° [15-17] controlled series compensation, apply dynamic control of the degree of series compensation in a long transmission line.
This compensator injected in the transmission line AB between busbar A (source) and B (load) a variable capacitive reactance (X_{GCSC}). From figure 1.b this capacitive reactance is defined by the following equation [18-19]:

$$X_{GCSC} = X_{C_{Max}} \left[1 - \frac{2 \gamma}{\pi} - \frac{1}{\pi} \sin(2\pi) \right]$$ \hspace{1cm} (1)

Where,

$$X_{C_{Max}} = \frac{1}{C_{GCSC}} \omega$$ \hspace{1cm} (2)

The conduction angle (β) which varies between 0 to 90° is defined by next relation:

$$\beta = \pi - 2\gamma = 2 \left(\frac{\pi}{2} - \gamma \right)$$ \hspace{1cm} (3)

From equation (3), the equation (2) becomes:

$$X_{GCSC} = X_{C_{Max}} \left[1 - \frac{\pi - \beta}{\pi} - \frac{1}{\pi} \sin(\pi - \beta) \right]$$ \hspace{1cm} (4)

Where, the relation of injected voltage is:

$$V_{GCSC} = \frac{V_{Max}}{C_{GCSC}} \left[1 - \frac{\pi - \beta}{\pi} - \frac{1}{\pi} \sin(\pi - \beta) \right]$$ \hspace{1cm} (5)

The reactive injected power by GCSC is:

$$Q_{GCSC} = \frac{V_{GCSC}}{X_{GCSC}} (\beta^2 - X_{GCSC} \beta)$$ \hspace{1cm} (6)

The active and reactive power at busbar B with GCSC is defined by following equations:

$$P_B = \frac{V_A V_B}{R_{AB}} \sin(\delta)$$ \hspace{1cm} (7)

$$Q_B = \frac{V_B^2}{Z_{AB}} - \frac{V_A V_B}{Z_{AB}} \cos(\delta)$$ \hspace{1cm} (8)

Where,

$$V_B = V_{B,W} + V_{GCSC}$$

$$V_{B,W} = V_{A,W} - \Delta V$$ \hspace{1cm} (9)

The $V_{A,W}$ and $V_{B,W}$ represent voltages at busbar A and B respectively without GCSC.

III. IMPEDANCE MEASURED BY MHO DISTANCE RELAY

Distance protection has been widely used in the protection of EHV and HV transmission lines. The basic principle of MHO distance protection involves the division of the voltage at the relaying point by the measured current [1], [29]. The apparent impedance so calculated is compared with the reach point impedance. If the measured impedance (Z_{seen}) is less than the reach point impedance, it is assumed that a fault exists on the line between the relay and the reach point.

The basic principle of operation of distance protection is shown in figure 3. The input to the relay point is the phase voltages and line currents transformed with the help of voltage transformer (VT) and current transformers (CT).

The voltage would fall towards zero at the point of the fault. The impedance measured by MHO distance relay (Z_{seen}) in presence phase (A) to earth fault is calculate by flowing equation [20-21]:

$$Z_{seen} = \frac{V_{seen}}{I_{seen}} = \frac{V_A}{I_A + K_I J_2} = R_{seen} + j X_{seen}$$ \hspace{1cm} (10)
Where, $K_o = \frac{Z_o - Z_1}{3Z_i}$ and $K_Z = \frac{K_{CT}}{K_{VT}}$ \hfill (11)

IV. SINGLE PHASE TO EARTH FAULT CURRENT CALCULATION ON PRESENCE GCSC

Figure 4 is shows the equivalent circuit for transmission line on presence single phase (A) to ground fault with fault resistance (R_F) at busbar B with GCSC inserted on midline.

From equations (17) and (18), the current in phase A is:

$$I_A = \frac{3(V_s + V_{GCSC})}{\left(\frac{Z_{AB-T}}{2}\right) + X_{GCSC-T} + \left(\frac{Z_{AB-T}}{2}\right) + 3R_F} \hfill (19)$$

The symmetrical components of voltages are:

$$V_0 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ a & a^2 & a^0 \end{bmatrix} V_A$$

$$V_1 = \frac{1}{3} \begin{bmatrix} 1 & a & a^2 \\ a^2 & a & a^0 \end{bmatrix} V_B$$

$$V_2 = \frac{1}{3} \begin{bmatrix} 1 & a^2 & a \\ a & a^0 & a^2 \end{bmatrix} V_C$$ \hfill (20)

From equation (14) and matrix (20), the voltage at phase A is:

$$V_A = \frac{3R_F(V_s + V_{GCSC})}{\left(\frac{Z_{AB-T}}{2}\right) + X_{GCSC-T} + \left(\frac{Z_{AB-T}}{2}\right) + 3R_F} \hfill (21)$$

From equations (10), (17), (19) and (21), the measured impedance Z_{seen} by distance relay is only related to:

- Parameters of transmission line: U_n, l_L, R_{AB}, and X_{AB}.
- Current and voltage transformer ratios: K_{CT} and K_{VT}.
- Parameters of GCSC installed: V_{GCSC} and X_{GCSC}.
- Fault conditions: location n_F and resistance R_F.

V. CASE STUDY AND SIMULATION RESULTS

The electrical network 220 kV studied in this paper is the eastern Algerian electrical transmission networks at Algerian company of Electrical and Gas is shows [24] in figure 5.

The MHO distance relay is located on the busbar at Ain M’lila in Oum El Bouaghi to protect the single transmission line between busbar A and busbar B at Khenchela substation 220/60kV in Algeria. The GCSC system is installed in the midpoint of the protected transmission line by a MHO distance relay.

The investigation were carried out for three case studies respectively for 30, 50 and 70 MVar of injected reactive power as well as for 10, 20 and 30 kV injected voltage. The parameters of transmission line and the installed GCSC are summarized in the appendix.
A. Impact GCSC on transmission line protected

The figures 6.a and 6.b represent the variation of reactive power \(Q_B\) and active power \(P_B\) at the load busbar \(B\) respectively as a function of injected \(X_{GCSC}\) by different GCSC.

![Fig. 6 Powers Variation with respect to injected reactance.](image)

\[Q_B = f(X_{GCSC}), \quad P_B = f(X_{GCSC})\]

B. Impact of \(X_{GCSC}\) on the impedance measured by relay

The figures 7.a and 7.b represent the variation of the resistance \(R_{seen}\) and reactance \(X_{seen}\) respectively as a function of injected \(X_{GCSC}\) by different GCSC in the presence \(R_F\).

![Fig. 7 Distance relay measured impedance variation \(Z_{seen}\).](image)

\[R_{seen} = f(X_{GCSC}), \quad X_{seen} = f(X_{GCSC})\]

C. Impact of \(V_{GCSC}\) on impedance measured by relay

Figures 8.a and 8.b represent the variation of \(R_{seen}\) and \(X_{seen}\) respectively as a function \(R_F\) for different injected voltage \(V_{GCSC}\) by different GCSC study.

![Fig. 8 Impedance measured by relay](image)
The results are presented in relation to a typical 220 kV single electrical transmission system employing different GCSC (10 MVar/10 kV, 50 MVar/20 kV and 70 MVar/30 kV). The compensator is connected at the midpoint of a protected transmission line by distance relay.

The simulation results show the direct impact on the total impedance of a protected line for different injected variable parameters X_{GCSC}, V_{GCSC} and Q_{GCSC} of the compensator. As can be seen the resistance R_{seen} and reactance X_{seen} respectively in the presence of GCSC and in case of earth fault with resistance fault R_F varied between 5 to 50 Ω at the end of the transmission line are affected. Therefore distance relay tripping characteristic depends on many factors including the power system structural and the pre-fault condition, the earth fault resistance, and parameters of reactance injected by GCSC based the maximum reactive power injected on electrical transmission line.

APPENDIX

A. **Power Source:** $U_i = 11$ kV, $f_n = 50$ Hz.

B. **Power transformer:** $U_{TR1} = 11/220$ kV, $S_{TR} = 200$ MVA, $X_{TR1} = j0.213$ Ω, $X_{TR0} = j0.710$ Ω.

C. **Electrical transmission line:** $U_i = 220$ kV, $l_i = 117$ km, $Z_j = 0.1213 + j0.4227$ Ω/km, $Z_0 = 0.3639 + j1.2681$ Ω/km.

D. **GCSC study:**
 - Case no. 1: $Q_{Max} = 30$ MVar, $V_{Max} = 10$ kV, $X_{C,Max} = 3.333$ Ω.
 - Case no. 2: $Q_{Max} = 50$ MVar, $V_{Max} = 20$ kV, $X_{C,Max} = 8.000$ Ω.
 - Case no. 3: $Q_{Max} = 70$ MVar, $V_{Max} = 30$ kV, $X_{C,Max} = 12.857$ Ω.

REFERENCES

M. Zellagui was born in Constantine, Algeria, 1984. He received the engineer and M.S degree in electrical engineering (electrical networks) from department of electrical engineering at University of Constantine, Algeria in 2007 and 2010 respectively, PhD Student and researcher at LSP-IE research laboratory from department of electrical engineering at Batna University, Algeria. Membership at International Association of Engineers (IAENG), and the Institution of Engineering and Technology (IET). His areas of interest include electrical networks, power system protection, power quality and FACTS devices.

A. Chaghi was born in Batna, Algeria, 1954. He received his BS degree from the University of Oran, Algeria 1980, and MS from the Manchester University, England 1984, and received his PhD degree in electrical engineering from Batna University, Algeria 2004. He is currently a Professor at department of Electrical Engineering and member LSP-IE research laboratory at University of Batna. His areas of interest include power systems optimization, power system protection, power quality and FACTS devices.