
 

 

 
Abstract—This paper mainly about the study on one of the 

widely used error correcting codes that is Low parity check Codes 
(LDPC). In this paper, the Regular LDPC code has been discussed 
The LDPC codes explained in this paper is about the Regular Binary 
LDPC codes or the Gallager. 
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I. INTRODUCTION 
ODING for error correction is one of the many tools 
available for achieving reliable data transmission in 

communication system[4].Low-density parity-check (LDPC) 
codes are a class of linear block LDPC codes[4]. LPDC codes 
were re-discovered independently by Mackay and Neal and 
Wiberg[1].The name comes from the characteristic of their 
parity-check matrix which contains only a few 1’s in 
comparison to the amount of 0’s. Their main advantage is that 
they provide a performance which is very close to the capacity 
for a lot of different channels and linear time complex 
algorithms for decoding. Furthermore are they suited for 
implementations that make heavy use of parallelism. 

 
A.  History 
Low-density parity-check (LDPC) codes are forward error-

correction codes, first proposed in the 1962 PhD thesis of 
Gallager at MIT, but then largely neglected for over 35 years. 
In the mean time the field of forward error correction was 
dominated by highly structured algebraic block and 
convolutional codes. Despite the enormous practical success 
of these codes, their performance fell well short of the 
theoretically achievable limits set down by Shannon in his 
seminal 1948 paper [1]. By the late 1980s, researchers were 
largely resigned to this seemingly insurmountable theory–
practice gap. The situation was utterly revolutionized by 
“turbo codes,” proposed by Berrou, Glavieux and 
Thitimajshima in 1993,  

In 2006, it is generally recognized that message-passing 
decoders operating on sparse graphs are the “right” way of 
thinking about high-performance error correction. Moreover, 
the “soft/iterative” paradigm introduced by Gallager, that 
some researchers refer to as the “turbo principle”, has been 
extended to a whole raft of telecommunications problems, 
including channel equalization, channel estimation, and source 
coding. 
 

Authors are with Department of Electrical and Computer Engineering, 
International Islamic University Malaysia (e-mail: khalifa@iiu.edu.my). 

II. LITERATURE REVIEW  
A.  LDPC Codes  
Generally there are two different methods to represent 

LDPC codes. Like all linear block codes they can be described 
via matrices. The second method is a graphical representation. 

  
1.  Matrix Representation 
Let’s look at an example for a low-density parity-check 

matrix first. The matrix defined in equation (1) is a parity 
check matrix with dimension n ×m for a (8, 4) code. We can 
now define two numbers describing these matrixes. wr   for 
the number of 1’s in each row and wc for the columns. For a 
matrix to be called low-density the two conditions wc << n 
and wr << m must be satisfied. In order to do this, the parity 
check matrix should usually be very large, so the example 
matrix can’t be really called low-density. 

                     (1) 

2.  Graphical Representation 
Tanner introduced an effective graphical representation for 

LDPC Tanner codes. Tanner graphes are bipartite graphes. 
That means that the nodes of the graph are separated into two 
distinctive sets and edges are only connecting nodes of two 
different types. The two types of nodes in a Tanner graph are 
called variable nodes (v-nodes) and check nodes (c-nodes).  
Fig. 1.is an example for such a Tanner graph and represents 
the same code as the matrix in 1. The creation of such a graph 
is rather straight forward. It consists of m check nodes (the 
number of parity bits) and n variable nodes (the number of 
bits in a codeword). Check node fi is connected to variable 
node cj if the element hij of H is a 1. 

 
 

Fig. 1 Tanner graph corresponding to the parity check matrix in 
equation (1). The marked path c2 ! f1 ! c5 ! f2 ! c2 is an example for 
a short cycle. Those should usually be avoided since they are bad for 

decoding performance 
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B.  Regular and Irregular LDPC Codes 
A LDPC code is called regular if wc is constant for every 

column regular and wr = wc · (n/m) is also constant for every 
row. The example matrix from equation (1) is regular with wc 
= 2 and wr = 4. Gallager’s construction technique: 
a) Code parameters N, K, wc, wr are given. 

b) Construct the following matrix with 
wc

KN −
 rows 

and N columns: 
c) Let π(H1) be a pseudo-random column permutation 

of H1. 
d) Construct regular LDPC check matrix by stacking wc 

submatrices: 
 

H=
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Regular (Gallager) LDPC Code Example 
This code has N=20, K = 5, wc =3, wr= 4. 
 

H=  
 
The number of ones is N.wc = (N–K).wr. From this, it is 

easy to show that the rate of the code is:    

                       
wr
wcR −= 1  

 
In this example, R = 1 - 3/4 = 1/4. 
There is the same number of incoming edges for every v-

node and also for all the c-nodes. If H is low density but the 
numbers of 1’s in each row or column aren’t constant the code 
is called an irregular LDPC code. 
 

C.  Performance and Complexity 
Before describing encoding and decoding algorithms in 

next section, we would like to explain why all this effort is 
needed. The feature of LDPC codes to perform near the 
Shannon limit1 of a channel exists only for large block 
lengths. For example there have been simulations that perform 
within 0.04 dB of the Shannon limit at a bit error rate of   

610− with a block length of 710 .The large block length 
results also in large parity-check and generator matrices. The 
complexity of multiplying a codeword with a matrix depends 

on the amount of 1’s in the matrix. If we put the sparse matrix 
H in the form [ TΗ  I] via Gaussian elimination the generator 
matrix G can be calculated as G = [I P]. The sub-matrix P is 
generally not sparse so that the encoding complexity will be 
quite high.  

Since the complexity grows in O( 2n ) even sparse matrices 
don’t result in a good performance if the block length gets 
very high. So iterative decoding (and encoding) algorithms are 
used. Those algorithms perform local calculations and pass 
those local. 

 
D.  Encoding 
A generator matrix for a code with parity-check matrix H 

can be found by performing Gauss-Jordan elimination on H to 
obtain it in the form 

H = [A, In−k], 
where A is a (n − k) × k binary matrix and In−k is the size n − 
k identity matrix. The generator matrix is then G= [Ik, AT].      

Here we will go into this process in more detail using an 
example.  

 
Example 1 
We wish to encode the length 10 rate-1/2 LDPC code: 
 

 
 
First, we put H into row-echelon form (i.e. so that in any 

two successive rows that do not consist entirely of zeros, the 
leading 1 in the lower row occurs further to the right than the 
leading 1 in the higher row). The matrix H is put into this 
form by applying elementary row operations in GF (2), which 
are; interchanging two rows or adding one row to another 
modulo 2. From linear algebra we know that by using only 
elementary row operations the modified parity-check matrix 
will have the same codeword set as the original, (as the new 
system of linear equations will have an unchanged solution 
set). The 1-st and 2-nd columns of H already have ones on the 
diagonal and entries in these columns below the diagonal are 
removed by replacing the 4-throw with the modulo-2 sum of 
the 1-st and 4-th rows. The 3-rd column of H does not have a 
one on the diagonal but this can be obtained by swapping the 
3-rd and 5-th rows. Finally, replacing the 5-th row with the 
modulo two sum of the 5-th and 4-th rows gives Hr in row-
echelon form: Next the parity-check matrix is put into reduced 
row-echelon form (i.e. so that any column that contains a 
leading one has zeros everywhere else). The 1-st column is 
already correct and the entry in the 2-nd column above the 
diagonal is removed by replacing the 1-st row with the 
modulo-2 sum of the 1-st and 2-nd rows. Similarly the entry in 
the 3-nd column above the diagonal is removed by replacing 
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the 2-nd row with the modulo-2 sum of the 2-nd and 3-rd 
rows. To clear the 4-th column the 1-st row is replace with the 
modulo-2 sum of the 1-st and 4-th rows. Finally, to clear the 
5-th column involves adding the 5-th row to the 1-st, 2-nd and 
4-th rows gives Hrr in reduced row-echelon form: 
 

 
 

Lastly, using column permutations we put the parity-check 
matrix into standard form (where the last m columns of Hstd 
are the m columns of Hrr which contain the leading ones) 

 

 
 

In this final step column permutations have been used and 
so the codewords of Hstd will be permuted versions of the 
codewords corresponding to H. A solution is to keep track of 
the column permutation used to create Hstd, which in this case 
is 

 
and apply the inverse permutation to each Hstd codeword 
before it is transmitted. 

Alternatively, if the channel is memoryless, and so the order 
of codeword bits is unimportant, a far easier option is to apply 
to the original H to give a parity-check matrix 

 

 
with the same properties as H but which shares the same 
codeword bit ordering as Hstd. 

Finally, a generator G for the code with parity-check 
matrices Hstd and H′ is given by 

 
All of this processing can be done off-line and just the 

matrices G and H′ provided to the encoder and decoder 
respectively. However, the drawback of this approach is that, 
unlike H, the matrix G will most likely not be sparse and so 
the matrix multiplication c = uG, at the encoder will have 
complexity in the order of n2 operations. As n is large for 

LDPC codes, from thousands to hundreds of thousands of bits, 
the encoder can become prohibitively complex. Later we will 
see that structured parity-check matrices can be used to 
significantly lower this implementation complexity, however 
for arbitrary parity-check matrices a good approach is to avoid 
constructing G at all and instead to encode using back 
substitution with H as is demonstrated in the following. 

 
E.  Decoding 
There are two basic decoding schemes for the LDPC codes. 

In the first scheme, the decoder computes all parity checks and 
then changes any digit that is contained in more than some 
fixed number of unsatisfied parity- check equations. Using 
these new values, the parity checks are recomputed, and the 
process is repeated until the parity checks are all satisfied. 

 In the second scheme an algorithm known as the “sum-
product” algorithm is used which is similar to the “belief-
propagation algorithm” used in networks. Information about 
each bit of the codeword derived from the received data is 
expressed as a probability ratio, the probability of the bit 
being 1 divided by the probability of the bit being 0. The 
probability ratios will be adjusted to take account of 
information obtained from other bits along with the 
requirement that the parity checks be satisfied. The algorithm 
alternates between recalculating the probability ratios for each 
check. 

III. METHODOLOGY 

In this paper, Low Density Parity Check code was 
implemented using Math lab. Gallager (Regular) Parity Check 
Matrix approach is applied for this project. The theory of 
regular LDPC code has been explained in previous section. 
For this project, we have examined three codes with different 
parameter but having the same length. The first code with 
parameter N=20, K=10,wc=1 or matrix dimension 10x20.The  
second code with parameter N=20, K=5,wc=3.For the last 
code with parameter N=20, K=4,wc=4.The parity  check 
matrix for the three codes have been created. After creating 
parity check of these three codes, the performances of those 
codes have been measured by determining value of BER and 
Code rates(R). 

 

 
Algorithm flow for Low Density Parity Check and BER 

Generate Gallager Parity 
Check Matrix (H) 

Generate BER 

Analysis 
BER and R 
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IV. RESULT AND ANALYSIS 
For N=20, K=10,wc=1 (10x20) 
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For N=20, K= 5, wc=3   15 x20) 
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For N=20, K= 4, wc= 4 (16 x20) 
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10
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100
Bit Error Rate

B
E
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From the simulation result, we can compare the 

performances of those three codes based on the Bit Error Rate 
(BER), Code Rate(R) and SNR (Eb/No).  For the first codes, 
the value of BER at 8dB is in the range between   5.310 −  

and 410− .The second codes, the BER value at 8dB is in the 

range between 5.210−  and 310− .Then the BER value for the 

third is in the range between  210−  and 5.210− .Meanwhile, 
the code rates of the first code is R= ½..The value of code 
rates for the second code is R= ¾ and the codes rate value for 
the third code is R=1/5. Generally the lower the code rate, the 
higher the coding gains. In other word, better Codes provides 
better coding gains and higher complexity. Therefore, the 
third code has better coding gain compared to others. But in 
tern of BER, the first code is the smallest value even though 
we have used the same length (N=20). 

 

V. CONCLUSION 
Low-density-parity-check codes have been studied a lot in 

the last years and huge progresses have been made in the 
understanding and ability to design iterative coding systems. 
The iterative decoding approach is already used in turbo codes 
but the structure of LDPC codes give even better results. In 
many cases they allow a higher code rate and also a lower 
error floor rate. In other achieve good coding gain 
performance, good LDPC code design is essential. A code 
design based on density evolution is only 0.0045dB away 
from the Shannon bound. However, it’s a rate-1/2 irregular 
code with maximum variable degree of 100 and block size of 

710 bits. It also requires an average of more than 1000 
iterations to achieve the result. The main disadvantage of 
these codes is that encoders are somehow more complex and 
that the code length has to be rather long to yield good results. 
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