{"title":"Salicylhydroxamic Acid Inhibits the Growth of Candida albicans","authors":"Shu-Ying Marissa Pang, Stephen Tristram, Simon Brown","volume":52,"journal":"International Journal of Bioengineering and Life Sciences","pagesStart":187,"pagesEnd":194,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/4710","abstract":"Candida spp. are common and aggressive pathogens.\r\nBecause of the growing resistance of Candida spp. to current\r\nantifungals, novel targets, found in Candida spp. but not in humans\r\nor other flora, have to be identified. The alternative oxidase (AOX)\r\nis one such possibility. This enzyme is insensitive to cyanide, but is\r\nsensitive to compounds such as salicylhydroxamic acid (SHAM),\r\ndisulfiram and n-alkyl gallates. The growth Candida albicans was\r\ninhibited by SHAM (Ki = 9-15 mM) and cyanide (Ki = 2-4 mM),\r\nalbeit to differing extents. The rate of O2 uptake was inhibited by\r\nless than 10% by 25 mM SHAM and by about 90% by 250 \u03bcM\r\nKCN. Although SHAM substantially inhibited the growth of C.\r\nalbicans, it is unlikely that the inhibition of AOX was the cause.\r\nSalicylhydroxamic acid is used therapeutically in the treatment of\r\nurinary tract infections and urolithiasis, but it also has some potential\r\nin the treatment of C. albicans infection.","references":"[1] A. M. Tortorano, J. Peman, H. Bernhardt, L. Klingspor, C. C. Kibbler,\r\nO. Faure, E. Biraghi, E. Canton, K. Zimmermann, S. Seaton, and R.\r\nGrillot, \"Epidemiology of candidaemia in Europe: results of 28-month\r\nEuropean Confederation of Medical Mycology (ECMM) hospital-based\r\nsurveillance study,\" European Journal of Clinical Microbiology and\r\nInfectious Diseases, vol. 23, pp. 317-322, 2004.\r\n[2] M. A. Pfaller, R. N. Jones, G. V. Doern, H. S. Sader, S. A. Messer, A.\r\nHouston, S. Coffman, and R. J. Hollis, \"Bloodstream infections due to\r\nCandida species: SENTRY Antimicrobial Surveillance Program in\r\nNorth America and Latin America, 1997-1998,\" Antimicrobial Agents\r\nand Chemotherapy, vol. 44, pp. 747-751, 2000.\r\n[3] O. Gudlaugsson, S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer,\r\nL. Herwaldt, M. Pfaller, and D. Diekema, \"Attributable mortality of\r\nnosocomial candidemia, revisited,\" Clinical Infectious Diseases, vol. 37,\r\npp. 1172-1177, 2003.\r\n[4] G. R. Schonbaum, W. D. Bonner, Jr., B. T. Storey, and J. T. Bahr,\r\n\"Specific inhibition of the cyanide-insensitive respiratory pathway in\r\nplant mitochondria by hydroxamic acids,\" Plant Physiology, vol. 47, pp.\r\n124-128, 1971.\r\n[5] J. N. Siedow and M. E. Girvin, \"Alternative Respiratory Pathway: Its\r\nrole in seed respiration and its inhibition by propyl gallate.,\" Plant\r\nPhysiology, vol. 65, pp. 669-674, 1980.\r\n[6] J. N. Siedow and D. M. Bickett, \"Structural features required for\r\ninhibition of cyanide-insensitive electron transfer by propyl gallate,\"\r\nArchive of Biochemistry and Biophysics, vol. 207, pp. 32-39, 1981.\r\n[7] L. Yan, M. Li, Y. Cao, P. Gao, Y. Cao, Y. Wang, and Y. Jiang, \"The\r\nalternative oxidase of Candida albicans causes reduced fluconazole\r\nsusceptibility,\" Journal of Antimicrobial Chemotherapy, vol. to be\r\npublished, 2009.\r\n[8] N. Sen and H. K. Majumder, \"Mitochondrion of protozoan parasite\r\nemerges as potent therapeutic target: exciting drugs are on the horizon,\"\r\nCurrent Pharmaceutical Design, vol. 14, pp. 839-846, 2008.\r\n[9] A. Veiga, J. D. Arrabaca, and M. C. Loueiro-Dias, \"Stress situations\r\ninduce cyanide-resistant respiration in spoilage yeasts,\" Journal of\r\nApplied Microbiology, vol. 95, pp. 364-371, 2003.\r\n[10] V. N. Popov, R. A. Simonian, V. P. Skulachev, and A. A. Starkov,\r\n\"Inhibition of the alternative oxidase stimulates H2O2 production in plant\r\nmitochondria,\" FEBS Letters, vol. 415, pp. 87-90, 1997.\r\n[11] S.-Y. M. Pang, S. Tristram, and S. Brown, \"An in silico model of the\r\nalternative oxidase,\" International Journal of Biosciences and\r\nTechnology, vol. submitted for publication, 2009.\r\n[12] R. M. Nervig and S. Kadis, \"Effect of hydroxamic acids on growth and\r\nurease activity in Corynebacterium renale,\" Canadian Journal of\r\nMicrobiology, vol. 22, pp. 544-551, 1976.\r\n[13] C. Y. Wang and L. H. Lee, \"Mutagenicity and antibacterial activity of\r\nhydroxamic acids,\" Antimicrobial Agents and Chemotherapy, vol. 11,\r\npp. 753-755, 1977.\r\n[14] J. J. Gavin, \"Analytical microbiology. II. The diffusion methods,\"\r\nApplied Microbiology, vol. 5, pp. 25-33, 1957.\r\n[15] S. Budavari, \"The Merck Index,\" 12 ed. Whitehouse Station: Merck &\r\nCo., Inc., 1996.\r\n[16] A.-E. A. Salem and M. M. Omar, \"Atomic absorption and\r\nspectrophotometric determinations of salicylhydroxamix acid in its pure\r\nand pharmeceutical dosage forms,\" Turkish Journal of Chemistry, vol.\r\n27, pp. 383-393, 2003.\r\n[17] B. Gompertz, \"On the nature of the function expressive of the law of\r\nhuman mortality, and on a new mode of determining the value of life\r\ncontingencies.,\" Philosophical Transactions of the Royal Society of\r\nLondon, vol. 115, pp. 513-585, 1825.\r\n[18] M. H. Zweitering, I. Jongenburger, F. M. Rombouts, and K. van't Riet,\r\n\"Modeling of the bacterial growth curve.,\" Applied and Environmental\r\nMicrobiology, vol. 56, pp. 1875-1881, 1990.\r\n[19] R Development Core Team, \"R: A language and environment for\r\nstatistical computing.\" Vienna, Austria: R Foundation for Statistical\r\nComputing, 2006.\r\n[20] R. K. Finn, \"Theory of agar diffusion methods of assay.,\" Analytical\r\nChemistry, vol. 31, pp. 975-977, 1959.\r\n[21] M. L. Delignette-Muller and J. P. Flandrois, \"An accurate diffusion\r\nmethod for determining bacterial sensitivity to antibiotics.,\" Journal of\r\nAntimicrobial Chemothrapy, vol. 34, pp. 73-81, 1994.\r\n[22] A. L. Koch, \"Diffusion through agar blocks of finite dimensions: a\r\ntheoretical analysis of three systems of practical significance in\r\nmicrobiology.,\" Microbiology, vol. 145, pp. 643-654, 1999.\r\n[23] S. Brown and N. L. Taylor, \"Inhibition of mitochondrial electron transfer\r\nby antipsychotic medication,\" Human and Veterinary Toxicology, vol.\r\n42, pp. 209-211, 2000.\r\n[24] J. B. Hiskey and V. M. Sanchez, \"Mechanistic and kinetic aspects of\r\nsilver dissolution in cyanide solutions.,\" Journal of Applied\r\nElectrochemistry, vol. 20, pp. 479-487, 1990.\r\n[25] B. K. Davis, \"Diffusion in polymer gel implants.,\" Proceedings of the\r\nNational Academy of Sciences of the USA, vol. 71, pp. 3120-3123, 1974.\r\n[26] L. Friedman, \"Structure of agar gels from studies of diffusion.,\" Journal\r\nof the American Chemical Society, vol. 52, pp. 1311-1314, 1930.\r\n[27] N. Fatin-Rogue, K. Starchev, and J. Buffle, \"Size effects on diffusion\r\nprocesses within agarose gels.,\" Biophysical Journal, vol. 86, pp. 2710-\r\n2719, 2004.\r\n[28] E. J. Schantz and M. A. Lauffer, \"Diffusion measurements in agar gel.,\"\r\nBiochemistry, vol. 1, pp. 658-663, 1962.\r\n[29] W. G. Bardsley, P. Leff, J. Kavanagh, and R. D. Waight, \"Deviations\r\nfrom Michaelis-Menten kinetics. The possibility of complicated curves\r\nfor simple kinetic schemes and the computer fitting of experimental data\r\nfor acetylcholinesterase, acid phosphatase, adenosine deaminase,\r\narylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose\r\ndehydrogenase, \u03b2-galactosidase, lactate dehydrogenase, peroxidase and\r\nxanthine oxidase.,\" Biochemical Journal, vol. 187, pp. 739-765, 1980.\r\n[30] R. Battino, T. R. Rettich, and T. Tominaga, \"The solubility of oxygen\r\nand ozone in liquids,\" Journal of Physical and Chemical Reference\r\nData, vol. 12, pp. 163-178, 1983.\r\n[31] S. Aoki and S. Ito-Kuwa, \"Respiration of Candida albicans in relation to\r\nits morphogenesis,\" Plant and Cell Physiology, vol. 23, pp. 721-726,\r\n1982.\r\n[32] Nomenclature Committee of the International Union of Biochemistry,\r\n\"Symbolism and terminology in enzyme kinetics.,\" European Journal of\r\nBiochemistry, vol. 128, pp. 281-291, 1982.\r\n[33] O. Schabenberger, B. E. Tharp, J. J. Kells, and D. Penner, \"Statistical\r\ntests for hormesis and effective dosages in herbicide dose response.,\"\r\nAgronomy Journal, vol. 91, pp. 713-721, 1999.\r\n[34] P. R. Rich, N. K. Wiegand, H. Blum, A. L. Moore, and W. D. Bonner,\r\nJr., \"Studies on the mechanism of inhibition of redox enzymes by\r\nsubstituted hydroxamic acids,\" Biochimica et Biophysica Acta, vol. 525,\r\npp. 325-337, 1978.\r\n[35] J. Hase and K. Kobashi, \"Inhibition of Proteus vulgaris urease by\r\nhydroxamic acids.,\" Journal of Biochemistry, vol. 62, pp. 293-299, 1967.\r\n[36] K. Kobashi, J. Hase, and K. Uehara, \"Specific inhibition of urease by\r\nhydroxamic acids,\" Biochimica et Biophysica Acta, vol. 65, pp. 380-383,\r\n1962.\r\n[37] W. N. Fishbein and P. P. Carbone, \"Urease Catalysis. Ii. Inhibition of the\r\nEnzyme by Hydroxyurea, Hydroxylamine, and Acetohydroxamic Acid,\"\r\nJournal of Biological Chemistry, vol. 240, pp. 2407-2414, 1965.\r\n[38] B. Davies and D. W. Edwards, \"Inhibition of myeloperoxidase by\r\nsalicylhydroxamic acid.,\" Biochemical Journal, vol. 258, pp. 801-806,\r\n1989.\r\n[39] T. Jones, N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B. B.\r\nMagee, G. Newport, Y. R. Thorstenson, N. Agabian, P. T. Magee, R. W.\r\nDavis, and S. Scherer, \"The diploid genome sequence of Candida\r\nalbicans,\" Proceedings of the National Academy of Sciences of the USA,\r\nvol. 101, pp. 7329-7334, 2004.\r\n[40] J. H. Bell and R. F. Pratt, \"Mechanism of inhibition of the betalactamase\r\nof Enterobacter cloacae P99 by 1:1 complexes of vanadate\r\nwith hydroxamic acids,\" Biochemistry, vol. 41, pp. 4329-4338, 2002.\r\n[41] G. R. Gale, \"Selective inhibition of deoxyribonucleic acid synthesis by\r\nsalicylhydroxamic acid.,\" Proceedings of the Society for Experimental\r\nBiology and Medicine., vol. 122, pp. 1236-1240, 1966.\r\n[42] I. Khozin-Goldberg, C. Bigogno, and Z. Cohen, \"Salicylhydroxamic acid\r\ninhibits D6 desaturation in the microalga Porphyridium cruentum.,\"\r\nBiochimica et Biophysica Acta, vol. 1439, pp. 384-394, 1999.\r\n[43] D. Leung, G. Abbenante, and D. P. Fairlie, \"Protease inhibitors: current\r\nstatus and future prospects,\" Journal of Medicinal Chemistry, vol. 43,\r\npp. 305-341, 2000.\r\n[44] J. B. Summers, K. H. Kim, H. Mazdiyasni, J. H. Holms, J. D. Ratajczyk,\r\nA. O. Stewart, R. D. Dyer, and G. W. Carter, \"Hydroxamic acid\r\ninhibitors of 5-lipoxygenase: quantitative structure-activity\r\nrelationships,\" Journal of Medicinal Chemistry, vol. 33, pp. 992-998,\r\n1990.\r\n[45] E. C. O'Brien, S. Le Roy, J. Levaillain, D. J. Fitzgerald, and K. B. Nolan,\r\n\"Metal complexes of salicylhydroxamic acid and Oacetylsalicylhydroxamic\r\nacid,\" Inorganica Chimica Acta, vol. 266, pp.\r\n117-120, 1997.\r\n[46] C. J. Marmion, D. Griffith, and K. B. Nolan, \"Hydroxamic acids - an\r\nintriguing family of enzyme inhibitors and biomedical ligands,\"\r\nEuropean Journal of Inorganic Chemistry, vol. 2004, pp. 3003-3017,\r\n2004.\r\n[47] V. \u253c\u00e1pringer, M. Horn\u251c\u00edckov\u251c\u00ed, R. Karl\u251c\u00a1cek, and B. Kopeck\u251c\u00ed,\r\n\"Salicylhydroxamic acids and its iron(III) complexes.,\" Collection of\r\nCzechoslovak Chemical Communications, vol. 52, pp. 602-608, 1987.\r\n[48] B. Coyle, K. Kavanagh, M. McCann, M. Devereux, and M. Geraghty,\r\n\"Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II),\r\nMn(II) and Ag(I) complexes,\" Biometals, vol. 16, pp. 321-329, 2003.\r\n[49] P. R. Rich, A. L. Moore, and W. D. Bonner, Jr, \"The effects of\r\nbathophenanthroline, bathophenanthrolinesulphonate and 2-\r\nthenoyltrifluoroacetone on mung-bean mitochondria and\r\nsubmitochondrial particles,\" Biochemical Journal, vol. 162, pp. 205-208,\r\n1977.\r\n[50] H. J. Harmon and F. L. Crane, \"Inhibition of mitochondrial electron\r\ntransport by hydrophilic metal chelators. Determination of\r\ndehydrogenase topography,\" Biochimica et Biophysica Acta, vol. 440,\r\npp. 45-58, 1976.\r\n[51] N. Schnell and K. D. Entian, \"Identification and characterization of a\r\nSaccharomyces cerevisiae gene (PAR1) conferring resistance to iron\r\nchelators,\" European Journal of Biochemistry, vol. 200, pp. 487-493,\r\n1991.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 52, 2011"}