Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

A Method to Annotate Programs with High-Level
Knowledge of Computation

Nobuhiko Hishinuma, Jun

Igari, and Rentaro Yoshioka

Abstract—When programming in languages such as C, Java, etc. But if structure of computation is spatial and céempit is so

it is difficult to reconstruct the programmer's adeonly from the
program code. This occurs mainly because, mucheoptogrammer's
ideas behind the implementation are not recordetiéncode during
implementation. For example, physical aspects offrdation such as
spatial structures, activities, and meaning ofalglgs are not required
as instructions to the computer and are often eetluThis makes the
future reconstruction of the original ideas difficlAIDA, which is a
multimedia programming language based on the cylberRodel, can
solve these problems allowing to describe ideasnbeprograms
using advanced annotation methods as a naturalnsate to
programming. In this paper, a development envirartmghat
implements the AIDA language is presented with eufoon the
annotation methods. In particular, an actual sifienhumerical
computation code is created and the effects ohitmotation methods
are analyzed.

difficult to describe the structure by only textdges can be
useful in describing such features, but the rdiigbiof
document is low.

Even if a programmer has sufficient background Kedge
of the computation, still it is a hard task to ntlae line of code
of its implementation with one's understanding.sTdiificulty
occurs since he spatial and temporal aspects oSiqaly
phenomena are not coded into the
programming language. Example of such aspects deslu
structure, flow of computation and meaning of \ales.
Suppose, for example, there is computation abouticfga
collision. Some programmers know the particlesqrenfeither
fission, scatter, or capture upon collision. Béthere are no
such direct explanations in words in the impleméeogram,

Keywords—cyberFilm, development environment, knowledg&ne programmers need to analyze the program lidaey!t is

engineering, multimedia programming language

|. INTRODUCTION
N traditional text-based programming languages ait,

difficult to understand the programmer's ideas ofrlgm
implemented code [1]. Therefore, as much knowledgded to
the environment, objective of the computation, atme
implementation strategies should be recorded alwitly the

Java and the like, computation is described by aaly program.Even if a programmer knows the computatiel, the

sequence of commands. The objective of these codsrae to
command the computer, not to explain about the naragto
programmers.

When programmers try to understand the prograny,dfien
rely on document. Therefore, programmers shouldterand
maintain high-quality documents. To maintain itsalify,
suitable modification of the document is requiredading to
change of the program. But in reality, this acyivis not
performed appropriately [1]. As a result, programsnmust
eventually understand the program by reading itled@]. One
of the ways of making programs readable and uraledsble is
by using identifier names and comments [3]. Buhéfse names
and comments are not appropriate, the programmiirdev
confused easily. Furthermore, it is often usefubitmerstand
and visualize the structural construction of theimmment
related to the actual phenomenon. Without this keadge, not
only much labor is spent, but also misunderstandoayrs. To
explain such feature, identifier names and commsmtsild be
written in detail and understandable.

Nobuhiko Hishinuma is with the Computer Science dmbineering
Department, University of Aizu (e-mail: m5141201@iau.ac.jp).

Jun lgari is with the Computer Science and EngingeDepartment,
University of Aizu (e-mail: m5141202@u-aizu.ac.jp).

Rentaro Yoshioka is with the Computer Science anireering
Department, University of Aizu (e-mail: rentaro@iataac.jp).

International Scholarly and Scientific Research & Innovation 6(2) 2012

201

programmer can be easily confused by unrelatedscdaenany
cases, there are such codes in a program justke ravork.
For example, input operations are not so importtnt
understand the computation itself. But, these cadies take
up rather great part of programs. Therefore, progrars spend
energy to distinguish main computation from suppertodes.
To focus on only main computation, a mark to dgtish them
will be required.In the past, various programmimpgp@aches
such as object-, aspect-, component- oriented anaging
have been provided. But, they are methods to jostdinate
program or reduce waste. To address these probtehsnly
that, but the program should be able to record -yl
knowledge. But traditional programming languagesd an
methods based on them cannot have the knowleddhein
program, because their specification is just tdemsequential
commands in only text.To solve these problemsAtiimations
and Images for Development of Algorithms (AIDA) tarage
and Active Knowledge Studio (AKS) have been devetb he
AIDA language is a multimedia programming langubgsed
on cyberFilm method. The cyberFilm method is a fatrno
represents computation using multimedia compongotss,
animations and extended-texts) [6]-[8]. A computatisually
has various features such as structure, flow, @aiz nterface.
The AIDA language consists of four different langaa and
they represent these features: the Language ofriftigtc

1SN1:0000000091950263

instructions of a

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

Dynamics (LAD), the Language of Algorithmic Command

(LAC), the Language of Algorithmic Interface (LARBhd the
Language of Algorithmic Text (LAT). The LAD reprets the
structure and flow of computation. The LAC reprédsetie
activity of computation by variables and formuldhe LAF
represents the operation related to input/outpta.dehe LAT
represents all the previously described featulasgéther in a
condensed form. AKS is a development environment
implement program in the AIDA language, and prosidige
views to edit and browse programs in the four laggs and
execute the program: the Skeleton View for LAD, Bogmula
View for LAC, the 10 View for LAF, the Integratedi®&w for

LAT and the Run View to transform the AIDA language

program into other languages such as C, Java, FORTa&hd

execute the program.The AIDA language can not only

implement the computation like other languagesalsd allows
to attach annotations about the programmer's id&&S
supports this effectively by taking advantage oftiple views.
The AIDA language and AKS is not only to computatibut
also to model and document them. Using the AIDAylage on

AKS, programmers can extract programmer's ideasn fro

implemented programs in such a way as browsingrdeats. In

this paper, the AIDA language is applied to an exam

computation which is to solve the Boltzmann equatiy the
Monte Carlo method [4], [5], and comparing it WRORTRAN
(a traditional text-based programming language)yotigh this
comparison, the effectiveness in understanding cdaipn

ideas of the AIDA language and AKS are analyzed and

represented.This paper consists of follows. In isect,
overview of the target computation is explainedséttion 3,
the Integrated View and its effectiveness is exgdi by
representing examples applied to the example caatipntand
comparing with FORTRAN program. In section 4, thedtions
of other views (Skeleton, Formula, 10 and Run vieavg
explained, and the availability of AKS as a devetept
environment is represented. Conclusion and futuoekvare
shown in section 5.

Il. TARGET COMPUTATION
A.Over View

The example computation we consider is the comioutdb
solve the Boltzmann equation by the Monte Carlohoet The
purpose of this computation is to obtain effectinerease of
neutrons by solving Boltzmann equation with Montarl@
approach. In addition, some control data and sizdigata are
also computed in this computation. In this sectidhe
computation is explained with the flow shown in.Fig

This computation says the Boltzmann equation, Imat
expression of the Boltzmann equation is not appkafde
Boltzmann equation is known as integrodifferengguation
with considering elementary steps such as streargiljsion,
fission, scatter, and capture of neutron partickst, in the
computation to solve by Monte Carlo method, theatiqu is
not required because each particle are traced alodlated
stochastically.

International Scholarly and Scientific Research & Innovation 6(2) 2012

202

AN AN

determine particle position

) check if particle is within bounds
(] .

Y

particle collision

I
y 1
1
1
1

fission scatter capture

L :

I
I
I
1
I |
I |
Yy vy
determine particle position for next generation

continue random-walk

compute effective increase rate

generation loop

compute average and standard deviation
of effective increase rate

Fig. 1 Flow of Computation

This computation simulates particles transportatiospace
with range of x-axis (the length of y-axis and Zsas infinity).
The particles move and collide in this space rangoRirst, the
particle position after random-walking is deterndpand the
position is checked if particle is within the rar@ehis space. If
the particle is not in the range, the particleudged as leaked
particle, and the random-walking is terminatedhé particle is
in the range, the particle collision is computed.

Thecolliding particle performsa reaction from three types of
reaction:

1) Fission: the colliding particle splits into some partickesd
changes the moving direction.
t2) Scatter: the colliding particle changes the moving
direction.
3) Capture: the colliding particle is captured by other pdetic

If the particle is captured, the random-walkingeisminated.
If fission or scatter is selected, the random-wajks continued
until the particle goes to out of range or capturafier the
random-walking, particles position which are nengremitted
in this generation are determined for next genematiand

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

effective increase rate is recorded. Then, the lobphe
generation is carried out the number of times wiisctiecided
before computation. Finally, average and standaxdgation of
effective increase rate are computed.

B. Implementation Method

To implement this computation in existing programgni
language such as FORTRAN, some information are @itieled
or transformed. Through the process, some probléms
understand computation are raised. In this sectibese
problems are represented and explained.

1. Structure of Computation

The main structure of this computation is spattalcture
which represents moving particles in space witlgeaof x-axis.
Then, almost all flow and activities of the comgiaaa shown in
previous section is done based on this structune.thie
FORTRAN program, the information of this structuig
separated into some parts such as variables antults of
computation. Fig. 2 represents transformation efstiucture to
FORTRAN specification.

(i A variables :
\ xs(mxnf), xsn(mxnf), x, xd
o

activities :
X=X +1r* Xm

if (x.1t.xd.and.x.gt.0.0)

xsn(nfi +1) =x

range
Fig. 2 Structure in FORTRAN's Implementation

The structure which is initially intended by th@grammer is
shown in the left of Fig. 2 as an image. This imag@esents the
structure of moving particles in space with ranfg-axis. But

to actualize this structure by the FORTRAN langyage

programmers will write program codes such as thlet of Fig.
2. In this example, the variables(mxnf) andxsn(mxnf) store
the x-position of thenxnf number of particles, andwhich also
store x-position of particle is for calculation. &'taariablexd is
for x-width of range. In the activities, first exgasion represents
random-move of the particler(and xm decided by random
number). The condition which is second command he t
activity represents that this structure has ranbee final
activity represents the relationship betwgst{mxnf) andx (i.e.
xsn(mxnf) is to store position for next generation anis for
calculation).

These transformed parts of information are spreathé
FORTRAN program but they are intimately relatedetach
other. Therefore, programmers will spend much tiarel
energy trying to read the program with up and dawn
understand the structure. Moreover, to understaedsbme
activities such as these particles have collisiothis space,
programmers will spend more cost to read. The strecof
computation is very important factor to understprmram and

International Scholarly and Scientific Research & Innovation 6(2) 2012

203

objectives of computation, so various programmeys to
understand it before understanding computation., Bhése
difficulty and complexity to read program and urstand the
structure increase the cost of understanding coatipat and

sometimes raises misunderstanding.
LOC 120

100

80

LOC = Line of Code

Fig. 3 Number of Lines par Part

2. Sub Computation for Application

A computation often includes computations which are
unrelated to its objective directly such as inpattput,
initialization, and finalization. In many casesgclwsupportive
computations for main computations are not needed t
understand the computation. But, such sub computatften
takes up various part of program and prohibits @ogners
from reading codes. Fig. 3 represents number e§lpar part in
the FORTRAN program applied to the example commriatn
this program, over 60 percent of program is usedsédy part
and they are intermixed. These unnecessary conymgato
understand often confuse programmers when they asad
modify the program.

l Continue)) Terminate
S
0 | T 00| | O—00
Collision)
" Move Séaétcr Fi;s"ion C‘;ﬁ;urc
(a) Original Idea
l Continue : w>=¢ |
~ Weight : w | O\ Q\\Weigh‘t IW=W-o
- /'(; :Q Collision Cﬁ— 0| > O Terminate : w < ¢
V‘i\’/lovc Gcncr;t; (0~n) -

(b) Implementation Method
Fig. 4 Flow of Particle Collision

3. Optimization for Computation

The one of the most important points of the example
computation is to determine type of reaction whartiples are
collided. If the program is implemented accordimg this
original idea devotedly, it may have conditionaamching to
compute a reaction from three types of reactionoanly and
reiterate it such as Fig.4 (a). But, there are soases that the
implementation disobedient to the flow of origindeas for
optimization. The FORTRAN program is also disobatit®

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

this flow about particle collision. In this prograrparticle
collision is computed by follow steps (Fig. 4 (Bjosvs this
flow):
1) recode number of new particles and each positiem (o n
new particles are generated randomly)

2) reduce weight of the particle
3) terminate the particle if it has low weight

Using features of neutron, this computation haseeded to
reduce unless part for implementation and quickercgssing
speed of simulation. But, at the same time, thismatation lost
information about the original idea as particlelisan and
three types of reaction. As a result, programmeik have
difficulty to find where the computation is done the
FORTRAN program. It becomes difficult to understathe
original idea of computations from the FORTRAN marm.

I1l. ANNOTATION METHOD FORHIGH-LEVEL KNOWLEDGE

To describe programmer's ideas before implememtatie
AIDA language have some annotation methods. Insbdtion,
the annotation methods to describe programmerasicgee
analyzed and represented through comparing theyrhttl
View with FORTRAN.The Integrated View, which is ookthe
views for the AIDA language, can represent all fdtures of
computation in a condensed form, and can edit aodde the
computation optimally. For example, the Integratéw
applied to the example computation is shown in Eign the
Integrated View, all computations are representeicbn and
extended text which can represent some particakrsuch as

mathematical symbols. This Integrated View needs$y on

one-and-a-half A4 paper compared with that the FRRNY
program needs four A4 papers. The Integrated Viawsists of
header and body section.

1. Header Section

Header Section is the top rectangular of Integr&tied and
represents all structures and variables of comipuatat
Structures are represented by structure namefusteuicon and
parameters of structure. The type of structure. (BRrGrid,
3D-Grid and moving particles) is determined by e icon.
If there are same types of structure in the Integr&iew, they
are identified by parameters and name of struc@nethe other
hand, variables are declared by structure icomdbiicon and
name. Structure icon of variable represents shdépeariable
such as scalar, 1-, 2-, 3-D grid, moving partickesmat icon of
variable represents the type of variable such tgém, float,
double float, string. In addition, variables carsocalhave
information of unit and group by icon [11]. For exale, the
variablexd of Fig. 2 can havBlanometer (nm) as unit amdldth
as group using icon.

2. Body Section

Body Section is under the header section and repteflows
and activities of computation. The body section kame
hierarchical sections called scene which are siralized by
parts of computation. Each scene is representestéye icon
and terminal section which consists of node icartsfarmulas.

International Scholarly and Scientific Research & Innovation 6(2) 2012

204

Header - m
@ sf[3], st[3], sc[3], ch[3], che[3], snu[3], ekf[4000]
& s3], ss305]
(s, st 5c, s5.ch, snu)[@]= [5 || (] " K
Body ‘ E—‘
L 1] e _ - 1
*e b, ntb, nsb. wiib)[@]= |5 [(] vinpu {
@<[ntb, ns Il[.]Lant {
| E‘ oK) = 10| nfis = nnb| wst = 1.0 wsou = 0 |/ ave= 0
P |le
0
|§| o[@] = stlw/2
e
”
Generation ol
— (|| @ ibatch[@ 1= senl.n || ntot{@] = nfis | (te, nfis) (@] = O
Loop T
@ X @1-x(@1] W@ -wst
tot
Random
>
Walking > ,‘ @ (@] - x + 1/stinglxlog(rand()x2 X rand(-1
e
m it Goframe | sledofrome
<é> x>08ax<xd | " break.
¢
Particle |
} . 18] "_{" @ nfi[@] = snulng] xwxsflng]/st[ng)/ekflibatch-1]+rand()
Collision ws u.’
e @ W(@1 = w x (1 - (sfing) + sclng) / (stingl)
vt ————
i
Tz [[doframe | esedoirame
TE—
‘e ——
E‘ (@] = max(w / (3.0 X wtlb). 1/5.0))
[@] - xsn(@]
i
Ii‘ ekflibatch] = tie / nnb
. weoul®M {3 | “ibatch >= nsb wsou +wst xnitot
i ‘wsou
(@)= | 11| Vibatch>=nsb ave + ekffbatch]
wst[@] = nnb / nfis

@ \/\ [T g = tibaten . nfis . ekffivatehl) >

l @ | ave(@1=ave / (nnb - nsb) | stav(@] = steldev ave . ekfl] nsb .t - nsb)
=

= — N

@ 3 [/ (0 for107] = (ave . st . wsou , waain wios.wes . weut @1).

Fig. 5 Integrated View or The Example Computation

Flow of computation is represented by scene icamaxle in
header. For example, the scene Random Walking artitle
Collision in Fig. 5 are flow for the structureoving particles
and the node icon represents each particle intthetgre. But
the temporal scene likes Generation Loop (Whiled)dn Fig.
5 represents structure by themselves.

A. Structure of Computation

Even if a programmer has sufficient knowledge oé th
computation, it is difficult to relate an implemedtcode to
physical phenomenon such as spatial structuresaetities.
The reason is that such spatial and temporal irdton is
fragmented and embedded in code with other infaonat

To solve this problem, the AIDA language provide
environment to describe such structural constroctiithout
fragmentation. For example, programmers can sedect
determine structures of computation intuitively g@ared with
traditional programming languages such as FORTRAMgU
the Integrated View. Fig. 6 is example to reprefiemstructures
and variables of the example computation. In tkengple, the
information related to the structure, which is nmgyparticles in
space with range, is shown in the upper right ig. |Bi. This

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

structure has three parametess,n andgroup. w means the
range of spacen means the number of particles, agraup
means the number of types of particlen andxs are variables
based on this structure to store the position digles. On the
other hand, the other section of Fig. 6 shows alesestructure
which is related to others such as computatiorsatistics and
observation.

A - w61 <=30 (
S 5 Q| n 1000 <=T0000 .
(Y//,\ o0 group: 3<=3 E Xxsn, Xs
Vel V4 W] st
—

: o) xd,wgain,wcut,stdv,nnb,
5 . sf[3], st[3], sc[3], ch[3],
r satsranon. ss[3][3], sst[3][3]

9

omr
dimension che(3).ekf(4000)

Fig. 6 Example of Header

Compared with the declaration of structures
FORTRAN program (Fig. 2), the information of theustures is
gathered in this section. Therefore, this appraacibles users
to understand what types of structure are compirethe
program before reading the body of code. In addljtisers can
image and understand spatial structures intuititaglgraphical
icons even if they are not specialist of the exangpimputation.
This approach will reduce the cost and misundedatgnn the
process of preparation to understand main computati

Computation related to input

o

Computation related to output

Processes related to preparation

*

3
o
)

Fig. 7 Types of Sub Computation

Processes related to finalization

B. Sub Computation for Application

As the structure in the Integrated View, flows ofrgputation
can be understood by scene icons before startimgad the
contents of scenes. Activities of computation sasHormulas
will be also more easily to understand than FORTRBé&cause
the Integrated View can use mathematical symbals as (e.g.
%, mandXp).

The Integrated View can represent not only impleatom
easily, but also can represent explanation of cdations
effectively. Scenes can have icons and commerasragtations
to explain the computation. Then, users can displasy
annotations by folding scenes for implementatiosing this
function, users can obtain two types of effectiwsne

The one is that users can read program with oloigithie part
of main computation. Parts of computation can hesified into

International Scholarly and Scientific Research & Innovation 6(2) 2012

in thé

205

main computation and sub computation. The main caatipn
means important part to understand computationgh®wother
hand, the sub computation means not important part
understand it such as input, output, initializatioand
finalization. The main computation is based on ¢xample
computation, so there is just as various typetiiairas there are
computations. But, we can anticipate types of thb s
computations to some extent. For example, somestgpsub
computation are represented in Fig. 7 with icortesE icons
for sub computation are predefined and programeensapply
unified it to a program. Therefore, programmers assess the
code is important or not easily.

Fig. 8 represents example to show the differenvéen the
FORTRAN program, unfolded scenes, and folded sceéltes
top section of Fig. 8 (b) and Fig. 8 (c) represantivity of input
operations for variables of observer structure, andther
section represents activity of initialization foanables of
observer structure.

12 read(7)

2.7 read(?,‘)snu(]),snu(2),snu(3)
28 ¢
29 che(l)=ch(1)

35 sst(nn,2)=(ss(nn,1)+ss(nn,2)...
36 enddo

(a) FORTRAN

Input patameters from file.

Set initial data to observers.

(b) Folded

o IE‘ { sf, st, sc, ss, ch, snu }[@]= Z G “xlib™
1.? @ { nnb, ntb, nsb, wtlb }[@]= E G “‘input”

T

: IE' ekf[0] = 1.0/ | nfis = nnb‘ wst=1.00 wsou=0

T

(c) Unfolded

Fig. 8 Sub Computation Scenes and Its Explanatcem&s

Compared with the FORTRAN program such as Fig.)8 (a
the computations are distinguishable on the bdsprepared
icons to explanation. Therefore, users can not agid
reading meaningless computation, but also mininsize of
program. Additionally, whenever users want to reag¢dhange
such sub computation scene, users can find the pim the
explanation. This approach will reduce the costdearching
main computation from large program.

About the other effectiveness of annotations isesgnted in
next sub section.

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

C.Optimization for Computation

The other effectiveness to use the annotationsdenes is
that users can read and understand both impler@ntatthod
and original ideas which are initially intendedgopgrammers.

111 call colid(w,ngx,xm,wlo) |
: 207 subroutine colid(w,ng x,x...
216 nfi=snu(ng)*w*sf(ng)/st(n...

228 w=w"(1.-(sf(ng)+sc(ng))/...
229 wlo=wpre-w

243 end
call wtwnd(istwwcu,wgawtlb)

128

245 subroutine wtwnd(istw,w...

258 if(w.gtwtlb) return
259 a=w/(wsu'wtlb)
260 b=1./wmxs

261 rr=rand()

262 c=max(a,b)

275 end

129 if(ibatch.gt.nsb)then
130 wecut=wcut+wcu
131 wgain=wgain+wga

(a) FORTRAN

Determine type of reaction.
(Paricle Collision)

Oy‘%
O>O
@

7
(b) Folded

Fission

Scatter

Capture

| "Ué ‘ EI ’ nfil @] = snulng] xwxsflngl/stlngl/ekflibatch-1]+rand()

[]
1

[]
= | [l®

2

@ | W@ =w > (1 - (5ng] + sclng)) / (stina) |

weight

f do-frame else-do-frame

_ hext break
w <= wtlb O O

KA

]
T2

@ c[@] = max(w / (3.0 x wilb), 1/5.0))I

7

(c) Unfolded

Fig. 9 Scenes for Implementation Method and Origideas

Fig. 9 also represents flow and activity of the regke
computation, but this scene is compute main contipuatdor
particle collision. This unfolded scene is impletesh by
implementation methods such as the FORTRAN prodFfam
9 (a)). Therefore, there are three scenes to exptanputation
to calculate number of particles genesis, compratieight of
particle and termination particle according tontsght in Fig.9
(c). This scene also has annotations which areesepted by

International Scholarly and Scientific Research & Innovation 6(2) 2012

206

Fig. 9 (b). Whereas the scenes of Fig. 9 (c) eryila behavior
of computation, this annotation represents inforomabased on
programmer's original ideas; particle collision émee types of
reaction. As you can see, the Integrated View cmiga and
represent computation based on implementation rdsttas
well as computation according to the ideas. Assalteusers
can understand the rationale behind computatioteaxs of
documents. This function can record the progranamer'
knowledge and purpose, and propose it to readetfsouti
misunderstanding. This approach will reduce thek rig
misunderstanding the computation and the cost tenstand
the computation.

In addition, the deference from the FORTRAN progriam
that not only the computation is represented byualis
components, but also some formulas which are nogssarily
to understand or modify computation are hided. &le,
Fig. 10 represents the FORTRAN program and a soéttee
Integrated View about computation to calculate nembf
particles genesis. In FORTRAN programfj which means
number of particles genesis is computed at firsten[xsn
which means the positions of generated particlagdsrded
(L220 to L222) anahfis which means total number of particles
is uploaded (L224). But, only the computation tdcuakate
number of particles genesis is appeared in thgiated View
and the others are hided. Because, even if the ofahe
computation for number of particles genesis is gedn the
computation for recording positions and uploadotgltnumber
will be needed. As a result, the Integrated Viewdmes more
compactness than traditional programming languaged
provides strong information encapsulation.

216 nfi=snu(ng) *w*sf(ng)/st(ng) /ek+rand ()
217 ¢

218 if(nfi.eq.0) goto 2000

219 ¢

220 do i=1,nfi

221 xsn (nfis+i)=x

222 end do

223 ¢

224 nfis=nfis+nfi

_ \

f: IE‘ - nfil @] = snulng] *xwxsflngl/stlngl/ekflibatch-1]+rand() J

4

Fig. 10 Extraction of Reconstructive Computation

IV. OTHERMETHOD FORANNOTATION

Besides the Integrated View, AKS have four views to
understand features of computation and to coni®lprogram
more easily. Fig. 11 represents relationship betweews of
AKS. These views are synchronized with togethed, they can
support to watch and edit the implementation. Tkel&on
View, the Formula View and the IO View represermttiges of

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

computation along with the Integrated View. Theedefice of
these views and the Integrated View, the Integrafésiv
represents whole features of combination but thdsevs
represent each specialized features. The Run Viseg ahot
represent features of combination supported by AHRA

language but it is also important view for AKS. éft
implementation in the AIDA language, it is execuiedhe Run
View. In this section, description of each viewépresented.

1. Skeleton View

The Skeleton View focuses on structures and flows o

computation according to LAD. Detailed informatiofflow of

the computation can be watched by animations ardjés as
annotations. For example, Fig. 12 is image of ramaalking
scene which can be watched on the Skeleton Viewnlif the
Integrated View, users may be able to understariy the
overview of structure, but users can understand ¢ve more
detailed action of structure using this view. Adifiglly, users
can also edit the information in this view.

2. Formula View

The Formula View focuses on formulas and activiids
computation according to LAC. When users want tat ed
formulas, this view will be often used. Of causasib formula
can be edited in the Integrated View, but there swme
particular formulas such as structured expression i
specification of the LAC.

For example, Fig. 13 represents two types of airact
formula. Fig. 13 (a) represents computation for dittonal
branching. This formula means that the expression
Wsou = wsou + wst * ntot is computed wheimatch = nsb is
true. Fig. 13 (b) represents computation for longc@mplex
expression and means (1). Using these particulanuias,
programmers can describe expressions more brigflyout
temporal variables. The Formula View is prepareddit such
expression easily because the view is specialiaegldit and
watch formulas.

&Ko (1)

G=(aw+ ——-)
tempr - Ba

3. 10 View

The 10 View focuses on input and output betweenAtizA
language and any components according to LAF. igiew,
users can select, edit and check input/output .filds
input/output files are selected on the Integratddwy the
information is reflected to this view.

4. Run View

There is the Run View to build and execute the oy
written in the AIDA language with AKS. This view gerates
program code in other programming language by tatepl
programming [9], [10]. After the program generatitire AIDA
language becomes compile-able program as otheudaes.
Then, the program can be executed on this vievettljrel he 10
data can be confirmed on the IO View.

International Scholarly and Scientific Research & Innovation 6(2) 2012 207

Active Knowledge Studio

4 N
Integrated View

I

Skeleton View Formula View 10 View <> RunView
—_ y=X+dz E‘A
t > xdx+a [
f(a,b) -'ﬁ
~ J

Fig. 11 Relationship of Views

4

X coordinate

- i
collision leak
| | 1
Y % %
fission scatter capture

< <

record # of neutr- ISP
ons and position decide direction

<

collision

i

collision

Fig. 12 Image the Flow of Computation

[et T 1
wsou[@]- %i ibatch == nsb wsou + wst Xntct

2
WSou

(a) Inline IF Formula

1
G[. = [+] aw

3

o ex KX a
3
Itempr[]—ea

(b) Inline Pattern Formula

Fig. 13 Structured Formulas

1SN1:0000000091950263

Open Science Index, Computer and Systems Engineering Vol:6, No:2, 2012 publications.waset.org/4493.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering
Voal:6, No:2, 2012

V.CONCLUSION AND FUTURE WORKS [5]

In summary, we have proposed three types of anaotat
methods to record programmer's ideas with hightlevés]
knowledge. The first annotation method is to démcrihe
structural construction of the application envir@mndefinition
and icons. As a result, even if programmers dohawe prior [7]
knowledge, they can understand the structure easilyout
analyzing program code. The second annotation rdethoo 8]
readily distinguish between main computation anppsutive
computation by marking them a predefined clasdificeof tags.
Using this annotation method, programmers can focusain
computation to analyze easily. The last annotatiethod is to
explain high-level knowledge such as objectivesasfiputation
and implementation strategies. Through understgndinthe
knowledge, programmers can understand the prograsme
original ideas and its relationship with impleméiata methods.
Previously, a programmer's efficiency and quality o
understanding a program depends mostly on indiVvidbiity.

But, these annotation methods enable programmers wh
develop the program to suggest the way of undedstgrihe
computation. This approach reduces not only labér o
understanding, but also the risk of misunderstandin

In addition, a development environment called AKE the
AIDA language has been implemented to demonstietset
methods, and the computation to solve the Boltznesuation
by the Monte Carlo method was modeled and impleetes
an evaluation, these methods and applications bhataned a
good reputation from the developers using the examp
computation. Additionally, through the developmeftAKS,
various program specification and visualizationhtéques in
each view were developed.

As future work, the development of AKS is contirgimong
with the improvement of the AIDA language. In peutar,
more information to understand programmer's idaah @S
about variables, formulas and input/output contesils be
implemented. Other functions, such as searchirgobtations,
debugging a program at the level of annotations as®
considered.

(9]

ACKNOWLEDGMENT

The sample computation and related FORTRAN program
presented in this paper were provided from Japanlddu
Energy Safety Organization (JNES). We appreciateSfor
their cooperation. Also we thank our laboratory rhers for
their support in developing AKS.

REFERENCES

[1] T.D.LaToza, G. Venolia and R. DeLine, “MaintaigiMental Models: A
Study of Developer Work Habits”, ICSE, New York,(80

[2] T. D. LaToza, D. Garlan, J. D. Herbsleb and B. Ayeké, “Program
Comprehension as Fact Finding”, ESEC-FSE, New Y2007.

[3] D. Lawrie, C. Morrell, H. Feild and D. Binkley, “Vét's in a Name? A
Study of Identifiers” In 14th International Confare on Program
Comprehension.

[4] S.A. Dupree, S. K. Fraley, “A Monte Carlo PrimarPractical Approach
to Radiation Transport”, Kluwer Academic/Plenum islier, New York,
2002.

International Scholarly and Scientific Research & Innovation 6(2) 2012 208

S. A. Dupree, S. K. Fraley, “A Monte Carlo Primesl¥me 2: A Practical
Approach to Radiation Transport”, Kluwer Academleffim Publisher,
New York, 2004.

N. Mirenkov, A. Vazhenin, R. Yoshioka, T. Ebihafia, Hitomi and T.

Mirenkova “Self-Explanatory Components: a New Paogming

Paradigm”, International Journal of Software Engnivg and

Knowledge Engineering, 11(1), 5-36, 2001.

N. Mirenkov and R. Yoshioka, “Visual Computing WithEnvironment
of Self-explanatory Components”, Soft Computing rdali 7, 20-32,
2002.

N. Mirenkov and R. Yoshioka, “A Multimedia SystemRender and Edit
Self-Explanatory Components”, The Journal of Inéeriiechnologies,
3(1), 1-10, 2002.

Y. Watanobe, N. Mirenkov and R. Yoshioka, “Algonitit CyberFilm

Language”, FCST '06, Japan-China Joint Workshof620

[10] T. Ebihara, “A Program Generator from CyberFilm Sfeations”,

unpublished, University of Aizu, 2005.

[11] K. Takeshige, “A Language of Embedded Clarity Sugipanpublished,

University of Aizu, 2011.

1SN1:0000000091950263

