MiRNAs as Regulators of Tumour Suppressor Expression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
MiRNAs as Regulators of Tumour Suppressor Expression

Authors: Olga A. Berillo, Gaukhar K. Baidildinova, Аnatoliy Т. Ivashchenko

Abstract:

Tumour suppressors are key participants in the prevention of cancer. Regulation of their expression through miRNAs is important for comprehensive translation inhibition of tumour suppressors and elucidation of carcinogenesis mechanisms. We studies the possibility of 1521 miRNAs to bind with 873 mRNAs of human tumour suppressors using RNAHybrid 2.1 and ERNAhybrid programmes. Only 978 miRNAs were found to be translational regulators of 812 mRNAs, and 61 mRNAs did not have any miRNA binding sites. Additionally, 45.9% of all miRNA binding sites were located in coding sequences (CDSs), 33.8% were located in 3' untranslated region (UTR), and 20.3% were located in the 5'UTR. MiRNAs binding with more than 50 target mRNAs and mRNAs binding with several miRNAs were selected. Hsa-miR-5096 had 15 perfectly complementary binding sites with mRNAs of 14 tumour suppressors. These newly indentified miRNA binding sites can be used in the development of medicines (anti-sense therapies) for cancer treatment.

Keywords: Exonic miRNA, intergenic miRNA, intronic miRNA, tumor suppressor.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332134

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784

References:


[1] A. Chow, C.L. Arteaga, S.E. Wang, "When tumor suppressor TGFβ meets the HER2 (ERBB2) oncogene", J Mammary Gland Biol Neoplasia, vol. 2, no. 16, pp. 81-8. 2011.
[2] A. Andersen, D.A. Jones, "APC and DNA Demethylation in Cell Fate Specification and Intestinal Cancer", Adv Exp Med Biol, no. 754, pp. 167-77. 2013.
[3] M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, "MicroRNAs in body fluids-the mix of hormones and biomarkers", Nat Rev Clin Oncol, vol. 8, no. 8, pp. 467-77. 2011.
[4] M. Ul Hussain, "Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action", Cell Tissue Res, vol. 2, no. 349, pp. 405-13. 2012.
[5] Y.K. Kim, V.N. Kim, "Processing of intronic microRNAs", Embo J, no. 26, pp. 775-783. 2007.
[6] A. Rodriguez, S. Griffiths-Jones, J.L. Ashurst, A. Bradley, "Identification of mammalian microRNA host genes and transcription units", Genome Res, no. 14, pp. 1902-1910. 2004.
[7] A. Allegra, A. Alonci, S. Campo, G. Penna, A. Petrungaro, D. Gerace, C. Musolino, "Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer", Int J Oncol, 1647. 2012. doi: 10.3892/ijo.2012.1647.
[8] Y. Zhang, S. Takahashi, A. Tasaka, T. Yoshima, H. Ochi, K. Chayama, "Involvement of microRNA-224 in cell proliferation, migration, invasion and anti-apoptosis in hepatocellular carcinoma", J Gastroenterol Hepatol, pp. 1440-1746. 2012. doi: 10.1111/j.1440- 1746.2012.07271.x.
[9] H. Cheng1, L. Zhang, D.E. Cogdell, H. Zheng, A.J. Schetter, M. Nykter, C. Curtis. Harris, K. Chen, S.R. Hamilton, W. Zhang, "Circulating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon", Cancer and Predicts Poor Prognosis, vol. 6, no. 3, pp. E17745. 2011.
[10] 10 D. Long, C.Y. Chan, Y. Ding, "Analysis of microRNA-target interactions by a target structure based hybridization model", Pac Symp Biocomput, pp. 64-74. 2008.
[11] D. Goldoni, J.M. Yarham, M.K. McGahon, A. O'Connor, J. Guduric- Fuchs, K. Edgar, D.M. McDonald, D.A. Simpson, A. Collins, "A novel dual-fluorescence strategy for functionally validating microRNA targets in 3-prime untranslated regions: regulation of the inward rectifier potassium channel Kir2.1 by miR-212", Biochem J. 2012.
[12] B.L. Brewster, F. Rossiello, J.D. French, S.L. Edwards, M. Wong, A. Wronski, P. Whiley, N. Waddell, X. Chen, B. Bove, Kconfab, J.L. Hopper, E.M. John, I. Andrulis, "Identification of fifteen novel germline variants in the BRCA1 3'UTR reveals a variant in a breast cancer case that introduces a functional miR-103 target site", Hum Mutat. 2012. doi: 10.1002/humu.22159.
[13] J. Satoh, H. Tabunoki, "Comprehensive analysis of human microRNA target networks", BioData Mining, no. 4, pp. 17. 2011.
[14] X. Zhou, X. Duan, J. Qian, F. Li, "Abundant conserved microRNA target sites in the 5'-untranslated region and coding sequence", Genetica, vol. 2, no. 137, pp. 159-64. 2009.
[15] A. Issabekova, O. Berillo, M. Regnier, A. Ivashchenko, "Interactions of intergenic microRNAs with mRNAs of genes involved in carcinogenesis", Biomedical Informatics, vol. 11, no. 8, pp. 513-518. 2012.
[16] F. Moretti, R. Thermann, M. Hentze, "Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame", RNA, no. 16, pp. 2493-2502. 2010.
[17] I. Lee, S.S. Ajay, J.I. Yook, H.S. Kim, S.H. Hong, N.H. Kim, S.M. Dhanasekaran, A.M. Chinnaiyan, B.D. Athey, "New class of microRNA targets containing simultaneous 5ÔÇ▓-UTR and 3 ÔÇ▓-UTR interaction sites", Genome Res, vol. 7, no. 19, pp. 1175-1183. 2009.
[18] G. Tzimagiorgis, E.Z. Michailidou, A. Kritis, A.K. Markopoulos, S. Kouidou, "Recovering circulating extracellular or cell-free RNA from bodily fluids", Cancer Epidemiol, vol. 6, no. 35, pp. 580-9. 2011.
[19] J.A. Weber, D.H. Baxter, S. Zhang, D.Y. Huang, K.H. Huang, M.J. Lee, D.J. Galas, K. Wang, "The microRNA spectrum in 12 body fluids", Clin Chem, vol. 11, no. 56, pp. 1733-41. 2010.
[20] R. Albulescu, M. Neagu, L. Albulescu, C. Tanase, "Tissular and soluble miRNAs for diagnostic and therapy improvement in digestive tract cancers", Expert Rev Mol Diagn, vol. 1, no. 11, pp. 101-20. 2011.
[21] M.V. Iorio, C.M. Croce, "MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review", EMBO Mol Med, vol. 3, no. 4, pp. 143-59. 2012.
[22] A. T. Ivashchenko, A. S. Issabekova, O. A. Berillo "Peculiarities of miR-1279 binding sites in CDS of ðáðóðáN12, MSH6 and ZEB1 oncogenes of human and animal". unpublished.