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Abstract—This paper evaluates performances of an adaptive noise
cancelling (ANC) based target detection algorithm on a set of real test
data supported by the Defense Evaluation Research Agency (DERA
UK) for multi-target wideband active sonar echolocation system. The
hybrid algorithm proposed is a combination of an adaptive ANC
neuro-fuzzy scheme in the first instance and followed by an iterative
optimum target motion estimation (TME) scheme. The neuro-fuzzy
scheme is based on the adaptive noise cancelling concept with the
core processor of ANFIS (adaptive neuro-fuzzy inference system) to
provide an effective fine tuned signal. The resultant output is then
sent as an input to the optimum TME scheme composed of two-
gauge trimmed-mean (TM) levelization, discrete wavelet denoising
(WDeN), and optimal continuous wavelet transform (CWT) for
further denosing and targets identification. Its aim is to recover the
contact signals in an effective and efficient manner and then determine
the Doppler motion (radial range, velocity and acceleration) at very
low signal-to-noise ratio (SNR). Quantitative results have shown that
the hybrid algorithm have excellent performance in predicting targets’
Doppler motion within various target strength with the maximum
false detection of 1.5%.

Keywords—Wideband Active Sonar Echolocation, ANC Neuro-
Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

I. INTRODUCTION

RECOVERING active acoustic sonar returns in multipath
media is a core problem of underwater signal processing

to detect and classify underwater targets. Because the system
is concerned with estimation of targets’ motion parameters,
it is well known that the implementation of such system
exploits the time-scale joint representation of target echoes [1].
The technique used to measure time and scale of objects
is commonly known as the cross correlation or matched
filter processing [2]. As in the wideband environment, this
technique estimates the time-delay and scale-change by cross
correlation of overlapping segments of the received complex
signal with a set of basis functions matched to the transmitted
signal. This method is then referred to as wideband replica
correlation (WRC). The standard WRC processing works
well for the most problems and has optimum performance
with the noise-free signal or the maximum output signal-to-
noise ratio (SNR) condition [3]. In the presence of severe
interference or in highly distorting media such as spread
or multipath channels [4], the WRC processing, however,
degrades the underlying back scattering returns. Together
with the system characteristics such as beam patterns and
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Fig. 1. A block diagram of the ANC-TME hybrid algorithm. (a) adaptive
ANC neuro-fuzzy scheme. (b) Iterative TME scheme.

transmitted signal, the severe interference has made the de-
tection even more difficult. This is because sharp peaks are
more sensitive to a sidelobe correlation interference mainly
arising from unwanted harmonics of the transmission, which
correlate with the replica. This assertion is even more justified
for harmonic ghosts being generated by overlapping these
unwanted harmonics after reflection from the first break (the
interface between the surface of the earth formation and the
covering water) with the weak reflections from deep reflecting
interfaces [4].

A fast hybrid denoising algorithm [5], [6], [7] based on an
ANC neuro-fuzzy processor and optimal wavelet transforms is
proposed for multi-target wideband active sonar echolocation
system for which one or more underwater target returns are
masked by interference. The aim of the hybrid algorithm
proposed is to recover the contact signals in an effective
and efficient manner and then determine the Doppler motion
parameters (radial range, velocity and acceleration) at various
target strength of SNR. Together with the real data set sup-
ported by the DERA UK, the hybrid algorithm is tested for
its performance in terms of targets’ motion detection based
on Doppler time-scale and time-delay of the received echo
via matched optimal filtering mechanisms (i.e. training sets).
The detection process of the hybrid algorithm as illustrated
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in Fig. 1 is composed of two distinctive schemes: adaptive
ANC neuro-fuzzy scheme and iterative optimum target motion
estimation (TME) scheme. The adaptive ANC neuro-fuzzy
scheme depicted in Fig. 1(a) is based on the adaptive noise
cancelling concept [8] with the core processor of ANFIS
(adaptive neuro-fuzzy inference systems [9]), while the iter-
ative optimum TME scheme depicted in Fig. 1(b) is based
on the optimal wavelet transforms with multilevel threshold
denoising. Using the adaptive learning intelligent systems,
unwanted parts of the target returns including harmonic ghosts
and those interference/noise contained in the higher frequency
ranges are removed, and hence to effectively improve the
target strength. We note that a priori the echo signals of
interest are in the lower frequency ranges. The stage of noise
cancelling exploits capabilities of ANFIS in tracking both
linearity and nonlinearity in multidimensional input space and
thus alleviating the sidelobe correlation interference.

The resultant signal is then proceeded by the iterative
optimum TME scheme for further localizing potentials and
then recovering the contact signal via matched filtering mech-
anisms. Process steps include: two-gauge trimmed-mean (TM)
levelization, discrete wavelet denoising (WDeN) [10], and
optimal CWT operation via FIR filtering structure. More
specifically, the TM-levelization step is a dynamic level-based
process controlled by two gauges not only to keep updating
the TME scheme but also to remove power of most excessive
sharp detail in the sense of trimmed mean estimation. Fol-
lowing from the TM step, the WDeN step associated with an
octave subband decomposition is applied. Its functionality is
to further suppress the remaining noise part of the training
data and thus produce fine tuned test cells for the final step of
target mapping, the optimal CWT operation via FIR matched
filtering mechanisms (i.e. training sets). Here the similarity
measurement in terms of CWT signal mapping is optimized
in the scale domain by the combination of golden section
search and successive parabolic interpolation method [11]. By
combining the adaptive ANC neuro-fuzzy scheme in the first
place with the iterative optimum TME scheme, the ANC-TME
hybrid algorithm is developed for real-time applications in
DSP-FPGA hardware implementation. It’s task is to rapidly
and accurately processing targets’ echoes in the presence of
severe interference, a combination of backscattered reverbera-
tion and ambient noise. Quantitative analysis of the evaluation
results have shown that the hybrid algorithm not only meets the
development requirements but also provides a higher degree of
signal detection capability with an increased robustness against
false signal detections.

II. REVIEW OF TECHNIQUES

A. WRC processing and optimum detection algorithm

Let us consider wideband signals in a multiple nondirec-
tional sonar channels for which the received waveform g̃(t)
can be described mathematically as [2]

g̃(t) =
∑I

i=1 αigi(t) + η(t). (1)

This model accounts for superposition of contact signal known
as target signatures gi(t) as in Eq. (2), which are received

Doppler distorted pulses in the L2(Ω) Hilbert Space of finite
energy at time t ∈ Ω ⊂ �. Furthermore, the background
interference η(t) as in Eq. (3) involves reverberation waveform
r(t) and additive ambient noise n(t):

gi(t) =
√

Siψ(Si(t − Di)) (2)
η(t) = �(t) ∗ r(t) + n(t) (3)

Here parameters are defined by ψ the transmitted signal
(pulse), αi amplitude (attenuation value) for the ith echo, Si

true Doppler scale for the ith echo, Di true round-trip time-
shift for the ith echo, �, an unknown channels of arbitrary
noise path filter. Reverberations due to multiple reflection
from the medium boundaries including the surface, volume
and bottom usually contribute in varying proportions. The
common scenario is chosen for which the sonar devices are
assumed to be mounted either on a surface ship or underwater
submarine [12]. As a result, the scattering process and the
dependence of the received reverberation on range can be
modelled in terms of having an intensity with exponential
statistics or an envelope, a square root of the intensity, with
the Rayleigh statistic. The probability density function of the
reverberation model is then given by

ρ(γ|σ) =
γ

σ2
e−γ2/2σ2

(4)

where γ is the amplitude of the envelope and σ is the standard
deviation representing the expected level of intensity. The aim
of the model in Eq. (1) is to isolate specular returns from the
background interference by using the wideband replica cor-
relation. Hence, a pair of scale-time joint motion parameters
(Ŝi, D̂i) associated with the ith return can then be estimated by
solving the maximization problem of the wideband ambiguity
function WCψg̃(s, τ) over both parameters simultaneously:

max
s.t.(s>0,τ∈�)

{||WCψg̃(s, τ)||2} = ||WCψg̃(s∗, τ∗)||2. (5)

Here WCψg̃(si, τ) associated with the ith specular return
having the Doppler scale si is defined as

WCψg̃(si, τ) =
∫ ∞

−∞
g̃(t)ψsi(t − τ)dt = 〈g̃, ψsi(t − τ)〉 (6)

which utilizes ψsi(t) ≡ √
siψ(sit) as a template to form the

hypothetical signal. As a result, the ith element of optimum
can be found by s∗i = Ŝi ≈ εS, ε > 0 and τ∗

i = D̂i ≈ D.
Due to computational expensive as two decision variables
involved and encountering difficulties in dealing with severe
interference [4], it suggests to consider basis functions ψs,τ (t)
already appeared as wavelets. Provided the variable change
s �→ 1

s , the inner product of WRC used as a similarity
measurement is then a CWT of g̃(t) with respect to ψ(t) [10].
Consequently, the aim of echolocation detection may be solved
by seeking the local maximum of CWT coefficients:

max
s>0,τ∈�

{||CWTψ g̃(s, τ)||2}. (7)

Given time support t ∈ [0, T ] for g̃(t), a discrete-time
version of the CWT consists of dividing the time interval
into N sub-intervals, and approximating the input signal as
g̃ ≡ [g̃(t0), . . . , g̃(tN−1)] where tk = (k + 1) T

N . The discrete
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CWT coefficients obtained for the sampled input signal g̃ at
the scale s can be represented by a bank of FIR filter output
response with filter coefficients h(s, 
) [5], i.e.,

CWTψ g̃[s, k] = y[s, k] = h(s, k) ∗ g̃(k)
=

∑min{k,n−1}
�=max{0,k−L} h(s, 
)g̃(k − 
),

(8)

for k = 0, . . . , n + L− 2. Here the filter tap range, due to the
symmmetric structure of the mother wavelet, is setting as

[−sTψ, sTψ]
sTψ

(2Tψfψ − 1) ≡ [0, L − 1] (9)

with sampling rate fψ and effective support [−Tψ, Tψ] of
the mother wavelet ψ. Due to the discrete setting by the
FIR filtering occurred in the abscissa time-domain, a pair
of optimizers (s∗, τ∗) can be evaluated using the following
optimal target training and mapping algorithm [5]:

Algorithm 2.1: Set i = 1. Let us denote
∑[ 2N+L

2 ]

k=[ L
2 ]

|ŷ[s, k]|2 ≡ f(s) (10)

where ŷ[s, k] = h(s, k) ∗ ĝ(k) and ĝ is a denoised signal of
g̃. Denote fn(s), n = 1, 2, . . . by the n-th derivative of f(s).
Define ε > 0 and parameters s0, smin, smax as CWT reference
scales corresponding to the Doppler scales s̃0, s̃min, s̃max

which represent the stationary, minimum and maximum target
motions, respectively. Let k0, kmin, kmax be time indices cor-
responding to the Doppler scales s̃0, s̃min, s̃max, respectively.

1) Given parameters s0, smin, smax, find an optimizer ŝ∗i
that maximizes f(s), i.e.,

ŝ∗i = arg max
s>0

f(s). (11)

2) Knowing the scale ŝ∗i , the corresponding time-delays
τ̂∗n
i,j = τ̂∗

i (kn
j ), j = 1, 2 . . . can be obtained for which

indices kn
j are given by

kn
j = arg max

(n,k)
{|fn

k (ŝ∗i ) − fk(ŝ∗i )|} (12)

where functions fn
k and fk are denoted by the kth

sample of the functions.
3) Let var(f) be the variance of the values in f . If the

stopping criteria

max(var(fn
k (ŝ∗i ))) ≥ max(var(η(ti)) (13)
|kn

j − k0|
max{|kmin − k0|, |kmax − k0|} < 1 (14)

are satisfied, then stop and set (s∗, τ∗) = (ŝ∗i , τ̂
∗
i (kn

j ));
otherwise return to Step 1) with index i replaced by i+1.

B. ANFIS learning, TM-levelization and Wavelet Denoising
operations

• ANFIS: The adaptive network represented by the ANFIS
architecture [9] is based on the Sugeno’s fuzzy if-then
rule [13] for which the fuzzy reasoning mechanism is
derived for an output η from a given input training data
set n(t). In theory, the network is combined with the
gradient descent and least-squares methods. The gradient
descent method is in the forward path to upgrade the

premise parameters, while the least-squares method is in
the backward path to identify the consequent parameters.
As a result, the nonlinear relationship between η(n(t))
and n(t) is identified and thus producing an estimate η̂
in the output. Instead of suppressing the interference η(t)
from the primary channel, the ANFIS operation takes g̃
as a contaminated version of η(t) in the primary channel
for training. Further inside into the ANFIS operation and
its process layers can be found in [9].

• TM-levelization: Its functionality is to generate a dynamic
level-based process controlled by two gauges as depicted
in Fig. 1(b): TMα1 , the external gauge and TMα2 , the
internal gauge. As the TM-levelization process slides
through the ANC output, the TMα1 is set iteratively
up. Its task is to generate loops that keep updating the
optimum TME scheme, removing power of most of the
sharp detail information in the sense of trimmed mean
estimation, and to achieve fast convergence towards an
optimal target mapping in the CWT operation. With
TMα1 being set, the internal gauge TMα2 is operated
iteratively down to preserve the potentials arisen from
the previous mapping, i.e. the data trimmed percentage
rate goes down. When the level of TMα1 increases,
more peaks of similar level to the contact signal become
revealed. At the same time, decreasing the level of TMα2

results in less and less power of potentials being removed
in order to preserve the contact signal. Note that when
the proceeded signal has a strong target strength, the TM
step can be skipped to increase the process speed of the
TME scheme. This setting can be always done at the first
iteration of the TME scheme.

• WDeN: The wavelet denoising operation is designed
to further suppress the noise part of the training data
followed by the TM step or resulted from the ANC
scheme by applying the thresholding rule to the detail
coefficients. This operation is proven to be efficient and
can be viewed as a nonparametric estimation of the
desired noise-free signal [14]. The de-noising procedure
proceeds in three steps:

1) Decomposition: Choose a wavelet, and specify a
level N. Compute the wavelet decomposition of the
signal at the level N.

2) Detail coefficients thresholding: For each level from
1 to N, select a threshold and apply thresholding rule
to the detail coefficients.

3) Reconstruction: Compute wavelet reconstruction
based on the original approximation coefficients of
the level N and the modified detail coefficients of
levels from 1 to N.

III. SIMULATION RESULTS

A. Input data description for ANC neuro-fuzzy scheme

In the ANC neuro-fuzzy scheme illustrated in Fig. 1(a), four
channels of interference signal corresponding to the returns
from 16 pings of 1s duration, delivered in complex format,
together with the same number of contact signal, are used to
form the primary and reference inputs to the ANC scheme.
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TABLE I
CRITICAL PARAMETERS SETTING.

Sea Depth (m) 100
Sonar Depth (m) 50

Sonar Wind Speed 6 m/s(≈ sea state 3)
Environment Seabed Type Medium Sand

Setting Number of Beams 1
Beamwidth 3dB (≈ 40 degrees)
Maxi. Target Range (m) 500
Pulse Morlet Wavelet

Synthetic Pulse Length (ms) 2
Echo Echo Duration (s) 1

Environment Sampling Frequency (Hz) 100k
Setting Amplitude (αi) 0.1

SNR range (dB) [-30,0]
Data Set per Source 2

ANFIS MFs per Input 4
Environment MF Type Gaussian

Setting Input-Output Data Load 100k
Training/Checking Rate [50%, 50%]

TM Basic Step Range [0.15, 0.75] × 10−3

Level Setting Increment Percentage 60%
DWT Wavelet Type Daubechies 10

Denoise Decomposition Level 16
Setting Threshold Type Soft

Wavelet Type Morlet Wavelet
CWT Support Range [−5, 5]

Mother Wavelet Scale Range [25, 36]
Setting Sampling Frequency (Hz) 32

Filter Tap Range [250, 360]

More specifically, as depicted in synthetic echo setting of
Table I, the contact signal is the mother wavelet in the CWT
mapping and is adopted as Morlet wavelet [2]

ψ(t) = exp(−αt2) exp(j2πfct). (15)

The waveform consists of a window function governed by
α = 9.5657MHz and a modulation function adjusted by fc =
20kHz, a central frequency of the waveform. In the following
evaluations, the 16 pings of returns are based on the various
levels of the target strength in the range SNR = [−30, 0]db.
In addition, four channels of interference signal include the
first two channels with reverberation r and white Gaussian
noise n mixed together in each channel. This constitutes the
major source of interference signal for the input of unknown
corrupting channel of noise path filter I (�1) and yields the
output ηr+n. The remaining two channels contain solely the
white Gaussian noise with zero mean and variance 0.04 to feed
into the corrupting channel of noise path filter II (�2) and also
yields the output ηn. The channels of noise path filters are
to simulate the worse detectable situation in highly distorting
media. For simplicity but still representing an extreme case of
the classical tests, channels of noise path filter are chosen as
follows:

�1(x1, x2) = 50(x1 + x2) + 100
�2(x1, x2) = 50(x2 − x2

1)
2 + (1 − x1)2.

(16)

Input data of ANFIS de-noise operation as given in the ANFIS
setting of Table I includes four Gaussian memory functions
(MFs) on each of the two input-output training pairs. Due to
the sampling frequency of the returns, there are totally 100k
input-output data pair. Among them 50% of the data set is
taken for the training modes, while the remaining 50% is for
the checking modes to validate the identified fuzzy model.

TABLE II
COMPARISON BETWEEN IDEAL OUTPUTS AND THE TME OUTPUTS.

Synthetic echo T1 T2

Algorithm Output Ideal TME Ideal TME
TOA (s) .25 .254813 .60 .5995
Location(pts) 25585 25582 60060 60056
Acceleration (m/s2) 35 34.4706 −.05 −.1256
Initial velocity (kn) 20.0 −1.0
Final Velocity (kn) 37.7037 37.7032 −1.05067 −1.05066

B. Input data description for the TME scheme

The input data for the optimum TME scheme is listed in
Table I. In the step of TM-levelization, it contains 5 basic
level set up empirically within the range [0.15, 0.75] × 10−3

and being updated with an increase of 60%. In the step of
wavelet decomposition, different levels of target strength can
be viewed by using a unique mother wavelet. In all examples
presented here, the largest scale level is set to be 16 and
the orthogonal mother wavelet is empirically chosen as the
Daubechies extremal phase wavelet [10] of order 10. Soft
threshold is adopted for the mother wavelet to yield minimax
performance for mean square error against an ideal procedure.
The CWT mother wavelet is adopted by the Morlet wavelet as
described in Eq. (15) with the duration of 2ms. The waveform
is sampled at 32Hz with effective support [−5, 5] for the
lowest level of similarity measurement within the scale range
[25, 36]. The resultant signal is then split into FIR filter banks
with the tap range [250, 360].

C. Results

Together with the real data set supported by DERA UK as
part of the torpedo homing research programme, we evaluate
the performance of the proposed hybrid algorithm for two sce-
narios of the multiple targets’ motion estimation. As illustrated
in Table I for the sonar environment, there were 16 data sets
received for various target strength. Furthermore, the strength
of signal to reverberation is measured by the target’s echo to
reverberation waveform.

1) Scenario I: This scenario is to estimate target’s Doppler
motion (radial range, velocity and acceleration) at the signal
strength of SNR=-30db for two targets’ ping noted by T1 and
T2. More specifically, the ping T1 is from a sonar guided
modern torpedo (such as the spearfish torpedo) launched below
the surface by a submarine. The torpedo’s mission is to search
for and home in its target with the ping T2. The torpedo is
thus assumed moving away from the signal receiver with initial
speed based on its parent vehicle, and its radial acceleration is
calculated at the moment when it is firing. The pinged target
T2 is assumed almost stationary with slow motion towards the
signal receiver. Detail of both targets are listed in the table II.
Combined with the four input channels received together with
the noise path filters all depicted in Figs. 2(a)-(f), the complex
signal is obtained and depicted in Fig. 3(c), while Fig. 3(a)-(b)
are given for reference. As can be viewed clearly, pings T1

and T2 are completely buried in the background interference.
By the setting of initial parameters given in Table I, Figs. 4(a)
and 5(a) show the output of ANC neuro-fuzzy scheme with
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Fig. 2. Interference sources. (a)-(b): Reverberation waveforms r1 and r2.
(c): Unknown corrupting linear channel of NPF for reverberation. (d)-(e):
White Gaussian waveforms n1 and n2 with zero mean and variance 0.04.
(f): Unknown corrupting nonlinear channel of NPF for white Gaussian noise.

5 epochs of ANFIS operation employed for training and
validating the complex signals. Performing the first WDeN of
the optimum TME scheme yields outputs given in Fig. 4(b)
for echo T1 and Fig. 5(b) for echo T2. Followed by the optimal
CWT similarity measurement, the estimated location of ping
T1e as depicted in Fig. 4(c) is accurately matched to the ideal
ping T1 with 3 sampling points difference. While, a false alarm
occurred in Fig. 5(c) for T2 is due to its weak returned signal
as can be viewed by Fig. 3(a). As a result, the first level of TM-
levelization with the gauge level TMα1 = TMα2 = 7.5×10−4

is performed to get rid of excessive noise and yields the 2nd

WDeN output shown in Fig. 5(d). Performing the optimal
CWT measurement, the location of T2 is successfully pinged at
T2e with 4 sampling points difference as illustrated in Fig. 5(e).

2) Scenario II: This scenario is to consider various levels of
the target strength in the range SNR = [−30, 0]db with 2db
element spacing for the estimation of total 16 echo returns.
Here each return contains two pings of target signal, T1 and
T2. Statistical results in the sense of the normalized absolute
error (NAE) and the relative absolute error (RAE) will be
used to examine the performance of the hybrid algorithm.
To efficiently implement the hybrid algorithm, the range of
ANFIS epoch in the ANC-neuro scheme is set based on 6
different ranges of SNR. That is, for the ranges of SNR level
[−5(k + 1),−5k − 1]dB, k = 0, . . . , 5, their corresponding
iterations are set at 2 ≤ [1.5k/2], k = 1, . . . , 6 epoches.
Figs. 6(a)-(e) and 7(a)-(e) show prediction errors of target
motion parameters in terms of NAE of the T1 and T2 targets,
respectively. In all 16 trials, clearly each estimate of parameter
has accurately matched their corresponding correct ones with
the maximum false detection of 1.5%. In addition, the overall
error measurements of RAE as can be seen in Fig. 6(f) and 7(f)
of each target parameters are also about 1.5% false detection
rate. Fig. 8 demonstrates the computational efficiency of the
hybrid algorithm in dealing with both targets in various target

strength with average cost of 31.476 sec per trial.

IV. CONCLUSION

In this contribution, the ANC-TME hybrid algorithm devel-
oped previously for real-time applications in FPGA hardware
implementation was examined to evaluate its performance by
real data set given. Its excellent performance indicated by the
simulation has been shown to be suitable for the detection of
underwater targets’ Doppler motion at very low target strength.
Quantitative analyses of the performance evaluation obtained
for each returns of ping have even shown that the hybrid
algorithm not only meets the development requirements but
also provides a higher degree of signal detection capability
with an increased robustness against false signal detections.
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Fig. 3. Time-domain received signal echoes. (a)Noise-free synthetic echoes:
T1 and T2. (b)Additive Interference consisting of reverberation of Morlet
and WGN(0,0.04) sampled at 100 kHz. (c)Composite returned signal with
the target strength SNR=−30dB.
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Fig. 4. (a)ANC neuro-fuzzy output of the 1st target ping T1 with 5 ANFIS
epochs. (b)Output of the 1st WDeN without TM-levelization. (c) Output of
the 1st optimal CWT mapping: |f3(s∗1) − f0(s∗1)|.
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Fig. 5. (a)ANC neuro-fuzzy output of the 2nd target ping T2 with 5 ANFIS
epochs. (b)Output of the 1st WDeN without TM-levelization. (c) Output of
the 1st optimal CWT mapping: |f3(s∗1) − f0(s∗1)|. (d) Output of the 2nd

WDeN with TMα1 = TMα2 = 7.5×10−4. (e) Output of the 2nd optimal
CWT mapping: |f3(s∗2) − f0(s∗2)|.
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the SNR range of [−30, 0]dB with average cost of 31.476 sec/trial.
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