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Global Behavior in () — xy)” Potential

K. Jaroensutasinee

Abstract— The general global behavior of particles in a non-
linear (Q — zy)? potential cannot be revealed by a Poincaré
surface of section method (PSS) because most trajectories take
practically infinitely long time to [integrate numerically before
they come back to the surface. In this study, as an alternative to
PSS, a multiple scale perturbation is applied to analyze global
adiabatic, non-adiabatic and chaotic behavior of particles in this
potential. It was found that the results can be summarized as
a form of a Fermi-like map. |Additionally, this method gives a
variation of global stochasticity criteria with Q).

IIndex Terms— Multiple Scale Perturbation, The Poincaré Sur-
face of Section, Fermi Map

1. INTRODUCTION

ORMALLY the Poincaré surface of the section method

(PSS) can be applied in order to reduce the dimension
of the phase space of a 2D nonlinear Hamiltonian system to
make it possible to obtain a qualitative description as provided
by a phase plane analysis. However, for a simple nonlinear
dynamical system Wwhere the effective Hamiltonian potential
is V(z,y) = (Q — zy)?, the PSS method can be impractical
to jprovide such [descriptions. This fis because for this kind
of system most trajectories can execute infinitely long times
before they cut the required section again. The purpose of this
study is to analyze such a case and to propose a combination
of analytical and computational methods to obtain a global
description of the system.

This form of potential when @ = 0 is studied as a starting
point to understand the convergence to a billiard [1]. In
addition, it had been long thought that this form of potential
had an ergodic property until a series of small stable islands in
this system were found [2], [3]. This is illustrated in Fig. 1. For
the case @ = 0, it is possible to approximate the trajectory
away from the center in tthe form lof Bessel functions and
trajectories on either side of the center can be connected by
a kimple line approximation. From Ithese orbits a map can be
derived which has chaotic solutions [4]. This signifies that a
major portion in phase space close to these Bessel trajectories
is chaotic.

[t is important to note that ithis form of potential has another
origin namely from the field of plasma confinement. The same
potential can be derived from the motion of a charged particle
in a cusp magnetic field [5], [6]. Using this picture of a charge
particle in a magnetic field gives us more information and
more insight into this nonlinear potential.
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Fig. 1. Poincaré Surface of Section for @ = 0. The stable islands occupies
very small area of the phase space while most areas of PSS are chaotic.

[n general, the behavior of charged particle motion in a
magnetic bottle can be thought of as being composed of
two oscillations, the Tongitudinal oscillation along the guiding
center and the cyclotron motion. Unfortunately, the complete
analytical solution of such situation is extremely difficult
or impossible to bbtain. One, therefore, has to search for
approximate solutions. In this work multiple-time perturbation
theory is used to study the adiabatic, non-adiabatic and chaotic
behavior of charged particles in a linear cusp magnetic field
where the effective Hamiltonian potential is (Q — zy)?.

With a straightforward perturbation scheme, one finds that
some terms fin the fexpansion are not periodic in time and
in fact blow up as t gets large (secular behavior). These
troublesome ferms can usually be jalgebraically combined to
restore periodicity and this is the basis of the multiple time
analysis. The method adopted here is based on the observation
that the two frequencies referred to above are quite distinct.
Hence in this situation a multiple time perturbation kcheme
is ideally suited. The underlying idea of the multiple time
perturbation is to extend fthe time Ivariable to two or more
independent Ivariables representing different timescales. The
expansion fis then carried out in fthe usual way and the
additional freedom of having two timescales is used ito remove
any time secularities.

II. ADIABATIC AND NON-ADIABATIC TRAJECTORIES

When this potential is thought of in terms of a charged
particle moving in a cusp magnetic field, it is important to
realize that the particle is confined to zones depending on
its initial kpatial and momentum conditions. In fact, these
confinement zones become like magnetic bottles. The fast
oscillation is associated with the Larmor frequency whilst the
slow oscillation is associated with the sloshing in the magnetic
bottle. Fig. 2 is obtained from a typical numerical solution
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Fig. 2. Typical motion of a particle for @ = 4.

for () = 4 and khows two distinctive oscillations with two
distinctive timescales.

With this idea in mind, the hyperbolic co-ordinate system
is the most appropriate as one of the co-ordinates essentially
describes the guiding center motion. It was first used by [7]
to calculate the non-adaibatic jumps.

The transformation equations between the hyperbolic and
the Cartesian co-ordinate system are:

() =y,
v =9 =qz+py,

2 =48+ VT,
y =%+ VP
PP+T(—p+1/$2+12) ()

1
‘1> Edt—pw—qy M

P z = ’
T ay/erin/ et V/o e
q y _ | (@t T (ot +92) \/ —pt /P 92

at 29/ @2+

The equations of motion in the rectangular co-ordinate and
hyperbolic co-ordinate systems are

2
l(iizzt = y(Q - :cy),
= 2(Q—a), o )
T2 —92) 1268 T
W= 2V Qo) + s
£p _ p(@7-T)+20y¥
C 2(¢?+v2)
Next the Hamiltonian can be used to determine the total
energy of the particle. In the rectangular co-ordinate system,

H=F((%)H () +(Q — 2y)?) )
and fin the hyperbolic co-ordinate system,

2 2
=3/ T Q-9 =F )
in which the total energy E can be normalized to 1/2 without
loss of generality.

The magnetic moment, defined by u = v% /B where v, is
the component of the velocity perpendicular to the direction
of the local magnetic field, can be written in rectangular co-
ordinates as

_ (getpy)? | (Q—zy)®
T @ e ©

and fin hyperbolic co-ordinates as
S w2 . (Q—%)* .
22(42492) 1 V2(¢24y2)E

@)
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Vo1, No9, 2008 156 it is iworth considering the time derivative of the

magnetic moment [du/d¢. It is found that in fthe hyperbolic
System

%’f = W [209W2 — 20 T3 — 49 P2V

—4(¢? +¢?) (6@ + 9 T)(Q — ¥)?]

The perturbation
timescales [8],

®)

scheme starts by introducing two

=, ©)

where ¢ = 0 and 1 after the following ftransformation lis
introduced:

t—sT1: t= 1QT,dt:\F,
w%m:¢ Qm, 57 = Qy/Qrn 19
s 6=Qs, % = QUGS

Total derivatives with respect to 7 can now be expanded in
terms of partial derivatives with respect to the 7,

d%-z = a? +ep0r —‘90+€‘91v
dd? = 37’ + 2687’087‘1 + 62 8 (11)
800 + 26801 +e€ 5‘11,
in|which the notation 0;; is introduced.
oth s and m are expanded in powers of € and
s = so(r1)+es1(m0,71) + €252(10, 1) + -ov,
2 12)
v = mo(r)+emy(r0,m1) + €2ma(79,71) + ...

where the small parameter (€) used in the perturbation scheme
is defined as 1/Q).

By inserting the above expansion scheme into the basic
equations (3) and equating terms of the same order in € gives
equations for sg, s1,... and mg, my,.... To zero order myg is
constant and equal to 1.

To first order the following important differential equation
was derived:

O3ymy = —24/82 + 1my, (13)

whilst to second order

2(s5 + 1)(959s2) =

—s9A2wE cos(2wory + 2C, ) (14)
420180 A1wp cos(woTo + Crny )

with the consistency condition

2 2 3 s 1 2
(5§ + 10150 = Js0(O150)* — 5504/ 1+ 85, (15)

which removes secular behavior. The solution to (13) namely
my = A1(m1)sin(womo + Cm, (11)) where wi = 2v/s0% + 1
has been used to obtain (14). A; and C,,, are possibly
functions of 7y but are constant with respect to 7q. It is possible
to determine |4; from the energy equation by substituting the
above forms Ifor sg, m; and sy into the energy equation. It

was found that
0150)
A% =1- (

2¢/1+ 8% (10
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Fig. 3. 3D surface of  (top) and jphase space for sg (bottom). Each contour
represents a Wifferent value of x, and hence p.

A. Phase Space for |Large Timescale Motion

Considering (15), although it seems impossible to kolve the
differential equation in closed forms, it is possible to obtain
an analytic description of the phase space for sg. The equation
may be integrated once and reduced to

(8150)% = k(1 + s2)%/* +24/1 + 2,

where k is a constant that is determined by initial conditions.
With the condition that so = s¢,, When 0159 =0,

a7)

K=—2(s5, +1)7* (18)
or
2
som =F/(-2)1 - 1. (19)

These imply that the value of 01s9 when sp = 0 is given by
D150 |sg=0= £V2 + K. (20)

and 9189 |sy=0 Was related to sg_, by eliminating x to give
(0150 |sp=0)? = —2(1 + 83 ,,) M4 + 2. 1)

This equation can be interpreted physically as it determines
the maximum distance that the particle can reach away from
the median plane (z = y,so = 0) with a given velocity
0180 |sp=0 at the median plane (sop = 0). In the limit as
80,m — 00, (0180 |so=0)?> — 2. This means that the particle
position can tend to infinity if the injected velocity at the
median plane approaches 2.

It was also possible to relate x to the magnetic moment. To
the lowest order (eZ), the magnetic moment s

1/2 (Bgm1)? mi
23/2(1+ s3)3/4 * \/2(1 4 s3)1/4

p=e (22)

International Scholarly and Scientific Research & Innovation 1(9) 2007 449

Vol:1, No:S, 0 tituting in our expansions for so and my yields

12 K

57 (23)

n=—€
and so p is a constant to this lorder (the lowest order) and the
motion is adiabatic.

The phase plane can be mapped using (17) and is shown in
Fig. 3. This phase plane is igenerated with a constant step size
in «. [The noticable two dark bands appearing near the top and
bottom of fthe center exhibit a so-called “squeezing effect”.
A particle trajectory will lie on one of the outer contours
if it is injected from a great distance and corresponds o a
small value of x and hence of the magnetic moment. When
such a particle reaches the median jplane where so = 0, a
tiny variation due to higher order terms in the expansion can
take the particle to another ccontour with a different value of
the magnetic moment kince the contours are all close to each
other due to the squeezing effect. This provides the opportunity
for non-adiabatic and chaotic effects to take place. In short
the presence of the squeezing of orbits is the indication that
chaotic effects are to be found. This squeezing effect is in fact
related to the pverlapping resonance effect in the standard map.
This will be illustrated later in this study when a Fermi-like
map from this representation was derived.

B. [Comparison of the method with numerically integrated
orbits (for Q > 1)

From the perturbation analysis, to second order

t = J/Qn = ﬁm

P Qm =Q +my
¢ = Q5=Q80+$82

which can be used to specify the initial conditions in the
numerical comparison with the full orbits.

To avoid the squeezing effect around the median plane, it
is more appropriate to start the particle far away from the
plane. This can be achieved by setting so(0) = s¢,m, With the
initial velocity d1s0(0) = 0. Moreover, the initial conditions
take the form sog = So.m,51(0) = s2(0) = 0150(0) = 0,
and om1(0) = (24/s3 ,, +1)*/? and in the original set of
variables ¢(0) = Qso,m,¥(0) = Q,®(0) = 0 and ¥(0) =
(2Q4/4#2 . + 1)'/2. With these initial conditions (15) and the
energy equation, then the system is ready to be integrated
numerically.

The verification was began with ) = 10 and found that
the slow time-scale oscillation was perfectly described by the
numerical solution of ¢g. The amplitude of the oscillation in
1 is also fully governed by A; which is a function of the slow
timescale.

For the fast time-scale, there is still some disagreement. This
is due to phase shifts in the fast time-scale. Better agreement
can be obtained by redefining the phase in m; by writing

my = A;(r1) sin (1/ ’ wO(T)dT> + Ch. (25)
0

This is consistent with the multiple time expansion.

(24)
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Q=4.

Fig. 4. Poincaré Map on x=y plane for ) = 4.

C. Non-adiabatic Behavior and Fermi-like Map

For the diabatic Timit, when the magnetic moment is nearly
constant or constant to lowest order, the agreement between
solutions to Llowest order jof the multi-time perturbation ex-
pansion and the numerical Eolutions of equations of motion is
very good. This reflects the adiabatic behavior of the particle.
However, if the particle is followed until it crosses the median
plane (¢ = 0), such a good agreement would not be archieved
and the magnetic moment of the particle changes to another
value. The difference of the two values, known as tthe mon-
adiabatic jump, is not described in the adiabatic theory or
the multiple-time [perturbation analysis where the magnetic
moment or x should be held constant.

n Fig. 16 these sudden changes fin iz as fthe particle crosses
the ¢ = 0 plane are shown for @ = 4. Away from the ¢ = 0
plane it is seen that p is a good constant. The small ripples
could be accounted for by going to next order in the multiple
time expansion.

For an orbit that starts with d¢/dt = 0 (a reflection point)
and pp at ¢t = t; and reaches the subsequent reflection point at
to with the new magnetic moment g2, the non-adiabatic jump
in the magnetic moment Ay = e — py can be defined by

integrating
t2
d
Ap = / at
t

) TR (26)

It was found that the cos @ term in du/dt equation gives the
most significant contribution to the non-adiabatic jump. For
now it is desirable to neglect the other contribution. Using the
definitions v* =} +vf =1,

o b2 v w2 ONT
Ul = b VL= e T (@Y
B = V2(¢? +y?)4, L =28

27
and to lowest order when i could be treated as a constant with
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Fig. 5. Typical Fermi-like Map ffor Q) = 4.
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Fig. 6. Typical non-adiabatic behavior for Q = 4.

v =1,
’U2 — ald’o
| 2\/Q242r¢3’
2 _ o9y 2
VLT age YD (28)
B = VIQQP+ e} = Vu,
1 2¢1/2
E = w3

0

where B is rhe magnetic field strength and R, is the rradius
of curvature |of the field line. Also,

1/2
R — g7z (20® — Bp) cos 0 29)

with the phase 6 = 6y — ¢! [ dtwg = by — [ dp(1/v)). A
term proportional to icos 260 has been neglected which can be
shown to lead to second order corrections. This equation lis
similar to those discussed in [7] and in [9].

The integral defined by (26) can be evaluated by a contour
integral method. When the domain of the integration was
changed from ¢t to LQS using the relation d¢/dt = v B, the
integral becomes a [contour integral from ¢; to ¢o. When the
domain is extended to the complex plane, the contour integral
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Fig. 7. Varfation of g(u) with @ (marked with + signs).

is dominated by a singularity pole with the minimum of the
magnetic field strength. The integration can then be evaluated
by using a general technique of contour fintegration in the
complex plane. For this jparticular system, the jump can be
approximated by

e
~Tlo75)77

exp(—% Oﬂ/z do

Ap
cos 6 ) oS PO, (30)

1—\/§u cosl/2ph

where 6y lis the phase when the trajectory crosses the median

plane [7]. The terms that was neglected in above treatment is

proportional to cos 26, but with a modular value of the order

of the square of Ap.

Mo study the dynamics of a particle undergoing many
reflections in the mirror ffield by kolving the equations of
motion is not practical in most cases. Numerical studies
suggest that orbits with low values of the magnetic moment are
highly chaotic, giving rise to exponential divergence (positive
Lyapunov number) of the numerical solutions to the actual
orbits. The alternative way to study the reflections fis by using
a mapping.

(30) provides us with the change in the magnetic imoment
for each crossing. Defining

_ rpt/2et/8
9(w) = ez X
Xp(—l /2 o cos 6 (3_1—)
€ J0 1—acost/29’’
with @ = VL\/2/6. Then, (30) can be rewritten as
Ap = g(pn) cosb. (32)

In order to get the complete description, the net phase change
in 0,d(p), of the orbit executing p was calculated. Using the
result from the multi-time perturbation,

AG = d(p)
cosh 0d0 (33)

— 2 (9 __coshods
efO v/ 1—acoshl/2 6

where cosh@ = 1/a? and sy = sinh 6.

Hence the complete description including the adiabatic and
the non-adiabatic behavior is a mapping of the form, where a
change of phase has been made in (32),

Pnt1 = Pn + g(un) sin an

34
9n+1 = en + d(un-l—l) ( )
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of this form. Unfortunately, these mapping equations are still
complex, and fo gain an understanding of the jgeneral features
of the map, linearization around a special value of i defined
by the resonance condition d(fi) = 2mm is possible Where m
is a positive constant. The linearization produces the Chirikov
or standard map

n+1 = I, + Ksinf,
VH : 35)

0n+1 — en + In+1

where K = d'(@)g(i), I, = d'(@)du, and ’ denotes
differentiation. It is possible to give the positions of the major
resonances with the corresponding i and distances between
the resonances, and this is fillustrated in Fig. 8.

However, tthis is not area preserving, that is, not a frue
representation of a Hamiltonian system. Since the above
treatment is essentially an expansion lin g and consistent with
this expansion. The map can be made area preserving by ffaking

En+1 = yn + d(ﬂn+1) - gl(;ufn COSEY (335

The result of the numerical evaluation of the map given by
(34) is shown in Fig. 5. It is similar to the phase plane structure
of the Fermi mapping as discussed in [11]. The islands show
quasi-periodic behavior of Ithe particle around d(u,,) = mn
resomances when m is an even number starting from 8. [If
m is an odd number, a period-two resonance was obtained.
They are situated between the even-number resonances. A
number of bounded areas of stochasticity also exist between
each resonance. However, when m lis higher than 18 or u fis
approximately equal to 0.22, the stochastic fregions of each
resonance join together, creating a global stochastic region.
The charged Jparticle can then wander to very low values of |
if it fis initiated in this stochastic region.

The phase plane structure around each of the resonances
is of the well known form ffound of the Chirikov map [11],
suitably normalized, as expected from the derivation which led
to (35).

By using this information together with (23) to calculate the
correct value of p at a reflection point, it is possible to reveal
the same structures of the map created by numerical solutions
of the equations of motion. The locations of each main
resonance are approximately the same as those found by the
mapping equation (34). The advantages of using the mapping
equation are clearly seen here. It takes an extremely long
time to compute orbits that posses low values of the magnetic
moment since such orbits execute very large distances before
being reflected back to the median plane. The exponentially
divergent behavior of chaotic trajectories also produces nu-
merical errors in the integrator which grow exponentially with
time.

IT1T. GLOBAL BEHAVIOR IAND A (Q-DEPENDENCE MAP

All of the above results are subsumed in a so-called Fermi-
like map (34), which gives us an overview of the global
particle behavior. The typical global behavior of particle
motion can be summarized by considering the structure of
the Fermi map for () = 4 shown in Fig. 5. For a certain range
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Fig. 8. K > 4 resonance positions. Dots indicate resonance positions at
(Q, ) that have the value of K > 4 while numbers indicate islands’ periods
or resonance numbers. The boundary of complete chaos is indicated by the
line.

of p, for example, from 0.24 to 0.3, the two resonant zones
are iwell apart and the wondering of a particle trajectory is
confined to a band bf y values, that is, by two KAM surfaces.
Moving downwards the distance between two neighboring
zones becomes smaller. At a certain value of p the two
resonances overlap and a macroscopic zone of finstability
appears in which the particle can wander from one resonance
to another.

The criterion for global stochasticity can be obtained by
many methods. According to the estimation by the method of
overlapping resonances, the last KAM curve will be destroyed
approximately at K = 1 and the system undergoes global
stochasticity at K > 4. Once the system is chaotic over a
significant part of phase space, it is necessary to introduce a
quantitative method to describe this pseudo-random motion.
Such motion in the global stochastic sea can be modeled by
a diffusion process [12], [11].

Fig. 8 indicates that when @@ < 1.5, there are no stable
islands because the all islands are destroyed. However, this
family of periodic kolution lis different from the one reported
in [13].

IV. DISCUSSION

~ The analysis is begun by transforming the relevant equations
and definitions from the usual rectangular co-ordinate system
to a hyperbolic co-ordinate system. These equations are then
scaled so as to express them in a convenient form to apply
multiple time perturbation theory with ¢ = 1/Q taking the
place of the expansion parameter. The results give that the
magnetic moment fis adiabatic invariant when the particle
was in high field |regions. This property is confirmed by
the expansion of the adiabatic invariant as fuggested by the
adiabatic theory. However, in general the adiabatic property of
the magnetic moment breaks down when the particle crosses
the Tow field region which is situated at the median plane
(z = y) ffor the case @ > 1 as in our system.

[t is found that the magnetic moment oscillates violently
when the solution is near or around the null point and is
adiabatically constant when the solution is ffar away from it.
Numerical calculation of the adiabatic invariant shows sudden
jumps which cannot be described by the expansion of the
variation in time of the magnetic moment. This phenomenon,
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the singularity in the complex plane which can be used to
approximately quantify the jumps [7].

All of these results can then be subsumed in a so-called
Fermi-like map (34), which jgives an bverview of the global
particle behavior for all Q > 1. As iz decreases to a normalized
value of what is called pcr;¢, the corresponding normalized
map becomes the standard map with K > 4. The behavior
becomes completely chaotic and p can diffuse down to a very
small value which normally takes an infinite time to trace its
trajectory. fie,;+ moves up to the value 0.5 when @ approaches
1. This means that the global chaotic behavior occupies a
larger area of the map. In other words, the particle motion
is more regular when @ is large.

It is important to note that the adiabatic approximation
developed here for the case Q > 1 is also applicable to the
adiabatic case in Q < 1 as well, but now the confinement
zone for @@ < 1 is mo longer shaped like @ magnetic bottle.
Furthermore, there kexists a null point at the center of the
confinement zone. The phase space of sg is qualitatively
different at the center (Fig. 3). For @ > 1, there exists a
noticable region of unsqueezing, while for @ < 1, all lines
are joined at the center resulting in complete mixing. Most
particle trajectories in this family can be concluded to behave
chaotically, especially for Q = 0.
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