
 

 

  
Abstract—Most scientific programs have large input and output 

data sets that require out-of-core programming or use virtual memory 
management (VMM). Out-of-core programming is very error-prone 
and tedious; as a result, it is generally avoided. However, in many 
instance, VMM is not an effective approach because it often results 
in substantial performance reduction. In contrast, compiler driven I/O 
management will allow a program’s data sets to be retrieved in parts, 
called blocks or tiles. Comanche (COmpiler MANaged caCHE) is a 
compiler combined with a user level runtime system that can be used 
to replace standard VMM for out-of-core programs. We describe 
Comanche and demonstrate on a number of representative problems 
that it substantially out-performs VMM. Significantly our system 
does not require any special services from the operating system and 
does not require modification of the operating system kernel. 
 

Keywords—I/O Management, Out-of-core, Compiler, Tile 
mapping.  

I. INTRODUCTION 
HE speed gap between processors and disks continues to 
grow wider with the rapid increase in the performance of 
processors and communication networks in the last two 

decades. As a result, disk I/O has become a serious bottleneck 
for many high performance computer systems. Hence, it is 
critically important to be able to construct I/O minimal 
programs [1]. 

The size and complexity of applications, both in the 
scientific and the commercial world, have increased. While 
the amount of memory available to high-end programs has 
certainly increased over the past decades, it is a truism that 
there is never enough memory. As a consequence, 
programmers must frequently cope with situations where only 
portions of the data sets can reside in main memory at any one 
time while the rest is on disks. As the data sets required by 
those applications exceed the capacity of the main memory, 
the computation becomes an out-of-core computation. For 
out-of-core applications, such as computational fluid 
dynamics and seismic data processing, which involve a large 
volume of data, the task of efficiently using the I/O subsystem 
becomes extremely important. Processing out-of–core data 
requires staging data in smaller granules that can be fit in the 
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main memory. Data required for the entire computation have 
to be fetched from files on disk. 

Modern computers, including parallel computers, use a 
sophisticated memory hierarchy consisting of caches, main 
memory, and disk arrays, to narrow the gap between processor 
and memory system performance. Much research has been 
done on virtual memory management (VMM) and other 
related operating systems (OS) concepts, I/O subsystem 
hardware, and parallel file systems [2][3][4]. Each of those 
approaches contributes to some degree to I/O performance, 
but they all lack a global view of application behavior, which 
limits their effectiveness.  

Parallel I/O is a cost-effective way to address some I/O 
issues. The wide availability of inexpensive powerful PC 
clusters with high-speed networks makes parallel I/O a viable 
approach. Parallel I/O subsystems [5][6][7] have increased the 
I/O capabilities of parallel machines significantly but much 
improvement is still needed to balance the CPU performance. 
The variety (private disks, shared disks or a combination of 
both) in the I/O architectures makes it difficult to design 
optimization techniques that reduce the I/O cost. The problem 
has become more severe since the size and complexity of 
applications have increased tremendously [8]. 

Historically, this lack of memory has led to the introduction 
of virtual memory management (VMM). OS designers offer 
the handling of I/O activity via VMM. However, VMM 
typically is quite oblivious to the peculiarities of a specific 
program and will accommodate “unthinkingly” whatever 
requests for the retrieval of pages or blocks of memory are 
passed on to it. This lack of information about the behavior of 
the executing program can result in very serious inefficiencies 
[9]. Research in VMM considers the use of smart virtual 
memory, techniques which reshape the data reference patterns 
to exploit the given hardware facilities and system software, 
and replacement policies. Overall these techniques assume a 
considerable amount of help from the hardware.  

In the last decade, a number of run-time libraries for out-of-
core computations and a few file interfaces have been 
proposed. SIO [10] proposes a parallel file system-
programming interface, which is based on the separation of 
programmer convenience functions from high performance 
enabling functions. MPI-IO [11] attempts to provide a 
portable interface for parallel machines. MPI-IO expresses 
data partitions in terms of derived data types. The MPI-2 
standard [12] has proposed a new, promising interface for 
parallel I/O. Kotz [13] extends the traditional UNIX file I/O 
interface for handling the parallel accesses to parallel disk 
subsystems. The parallel file systems and run-time libraries 
for out-of-core computations provide considerable I/O 
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performance, but they require much effort from the user; also 
they are not portable across a wide variety of parallel 
machines with different disk subsystems. 

 Current operating systems offer poor performance when a 
numeric application's working set does not fit in main 
memory. As a result, programmers who wish to solve “out-of-
core” problems efficiently are typically faced with the onerous 
task of rewriting an application to use explicit I/O operations 
(e.g., read/write) [14]. The difficulty of handling out-of-core 
data and writing an efficient out-of-core program limits the 
performance of high performance computers. Execution of 
some out-of-core programs does not perform well when they 
rely on the virtual memory management (VMM) system. 
There is a clear need for compiler-directed explicit I/O for 
out-of-core computations [15] [16] [17] [18] [19] 
[20][21][22][23].  

In this paper, we concentrate on the compiler-based 
approach to the I/O problems. Compiler-driven I/O 
management uses the information collected by a typical 
optimizing compiler and applies valid code transformations to 
the program, with the goal of minimizing the number of 
blocks transferred between disk and main memory. The main 
rationale behind this approach is the fact that the compiler has 
unique information about the data needs of the program. The 
compiler can examine the size and shape of the data and the 
overall access pattern of the application. Compiler driven I/O 
management can and should generate code to restructure out-
of-core data, computation, and the management of memory 
resources. A compiler combined with a user level runtime 
system can replace and outperform standard virtual memory 
management for out-of-core problems [24][25]. It is important 
to understand that this approach holds great promise for a 
dramatic improvement in the overall execution time of 
programs involving fairly regular computation structures, as 
they are encountered in typical scientific computations. While 
the techniques involved are also applicable to the transfer of 
blocks of data between main memory and cache, our interest 
is more in supplanting VMM, since the access characteristics 
of main memory of a few nano-second (ns) and disk of tens of 
milli-second (ms) imply a factor of improvement of seven 
orders of magnitude while the cache scenario has a 
improvement factor of less than 10 (i.e., one order of 
magnitude).  

Comanche (an acronym for COmpiler MANaged caCHE) is 
a software system whose goal is to reduce the amount of 
implicit I/O of a given program. Comanche’s approach is 
based on information collected by a typical high-performance 
optimizing compiler, in particular dependence analysis, and 
attempts to restructure the program using standard code 
transformation techniques.  Comanche was developed in two 
Ph. D. dissertations as a proof of concept [24][25]; as such, 
the emphasis was somewhat limited and for the most part 
restricted to uniprocessors. It was subsequently employed to 
demonstrate quite convincingly the superiority of compiler-
driven I/O management over VMM on a variety of scientific 
computation applications [26][27][28][29][30][31]. Section 2 
will give more details about Comanche and the results 
achieved with it are contained in Section 3. The limitation of 

the system and future studies will be discussed in Section 4.   

II. COMANCHE AS PROOF OF CONCEPT 
I/O minimization is very dependent upon the efficiency of 

transferring data between memory and disk and upon the 
economy of using memory. Programs that use compact, 
economical data sets will be able to exploit the limited 
memory more efficiently. Improving data locality can impact 
both bandwidth utilization and the economy of memory 
utilization. 

Our approach to I/O minimization is based on a compiler-
driven I/O management and runtime system named Comanche 
(an acronym for COmpiler MANaged caCHE), which replaces 
the virtual memory management (VMM). This approach is 
based on a compiler managed cache, where the main memory 
is viewed as the cache. In Comanche, the program is 
restructured to move data automatically between main 
memory and disk. Most importantly, the compiler is 
responsible for directing the runtime system as to which data 
can be transferred and when the data can be transferred. 
Comanche is written in C and uses the standard I/O library 
calls – fopen, fclose, fread, fwrite, and fseek. The runtime 
system should compile under any compiler that supports these 
calls. This solution is general purpose and platform 
independent. The current Comanche system is running under 
the RedHat 5.0 Linux operating system and Windows 2000 on 
a PC with a PentiumPro (160Mhz or faster) processor and 
64MB or more RAM.  

The goal of Comanche is that the system performs at least 
as well as VMM in all cases and significantly better in most 
cases. The cooperation between compiler and runtime system 
is a key factor, as is data dependence analysis, in locality 
improving optimization. Our research aims at improving and 
extending the applicability of the Comanche runtime system 
supported application program interface (API), particularly, 
the data mapping methodology and optimizing paradigm to 
achieve high performance of I/O-intensive out-of-core 
computations. 

It is important to keep in mind that in contract to the OS, 
the compiler has unique information about the data needs of 
the program, the size and shape of arrays, and the access 
patterns of the program. It is this information that typically is 
not available to the operating system, which is customarily 
charged with the management of I/O calls.  Several minor 
custom optimizations were necessary to achieve across the 
broad acceptable performance for the programs in our test 
suite. However, optimizations are invariably better understood 
when they are applied to specific performance problems.  

The standard entity in the Comanche runtime is a two-
dimensional array. Higher dimensions can be supported, or 
else the accesses can be translated to two-dimensional 
accesses. Data are assumed to be in row major layout on disk. 
The ideal array is a square matrix. The Comanche runtime 
system supports a simple application program interface 
(API). There are four major operations in the API: 
comanche_map, comanche_unmap, attach, and release.  

comanche_map takes the file name, the number of rows, the 
number of columns, the element size in bytes, a flag indicating 
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if the array is written and the maximum number of rows the 
application will need to be resident at any given instance as its 
arguments. It returns a handle to the data structure that 
represents the array. This call manages the initialization of the 
data structures needed to support the given array. It is called 
before the first attach operation.  

comanche_unmap takes as its single argument the handle 
returned in the comanche_map call. It does not return any 
value. This call will flush buffers and write everything back to 
disk, if the flag for array write is set, before returning. It also 
closes the files opened in comanche_map. This call must be 
paired with a specific comanche_map for correct operation 
and is called after the final release operation. 

comanche_attach takes as its arguments the handle returned 
in comanche_map, the index of the row to be attached, and a 
write flag indicating that the row will be subsequently written. 
It returns a pointer to the beginning of the row. This command 
will always return the same pointer if repeated calls are made 
with the same handle and row index. If the row is already in 
memory, a reference counter is incremented. Otherwise, the 
row is read from disk. If necessary, it will displace another 
row whose reference count is zero.  

comanche_release takes as its arguments the handle 
returned in comanche_map and the index of the row to be 
released. It does not return a value. This operation signals to 
the runtime system that a previous call to comanche_attach is 
released and, if the reference count is zero, the space can be 
reclaimed. It must be paired with a specific comanche_attach 
for correct execution of the system.  

The attach and release operations tell the runtime that a 
certain region is to be mapped into memory and that an 
address to the cached data is to be returned. Unlike virtual 
memory, or cache, the runtime system will not reclaim 
memory that has been attached no matter how long it has been 
since it was last referenced. The release operation is enforced 
by the runtime system and the compiler manages the duration 
of mapped data and ensures that the number of attach 
operations will not over-fill the available memory before 
subsequent release. Simple reference counting can be used to 
keep track of how many outstanding release operations are 
left. The attach and release directives combined with the 
controlled access to memory allow aliases to be controlled. 
The cooperation between the compiler and the runtime system 
achieves a simple but efficient solution. 

III. RESULTS ACHIEVED USING COMANCHE 
A. Most Elements of One Row Are Used Continuously 

[20], [24] 
The main technique used in Comanche is the use of attach 

and release directives. These instructions tell the runtime 
system that the region is to be mapped into memory and then 
an address to the called data is to be returned. Each time, 
attach reads a whole row into the buffer in the main memory. 
The runtime system will not reclaim the memory that has been 
attached until it is explicitly released, no matter how long it 
has been since it was last referenced. The compiler manages 
the duration of mapped data and ensures the data locality in 
memory. The rationale behind this methodology is the 

assumption that the neighbor elements are known to be 
referenced in the future. This method works well when most 
elements of one row are used continuously and only elements 
in a few rows are involved each time.  

The test suite provides a large coverage of the access 
patterns common to scientific programs. stats uses a one-
dimensional vector with sequential read access such as would 
be found in a statistics collection program. window1 uses a 
one-dimensional vector with a window of neighbors similar to 
a finite difference computation in one dimension. matvec is a 
standard matrix vector product, C = A x B. The compiler 
manages the resource and  accesses three two-dimensional 
grids in a stencil pattern like that found in the 2D wave 
equation. The system performs better than VMN and uses 
significantly fewer system resources to do so. 

The test suite was executed on a standard Unix workstation. 
The workstation is a PentiumPro 200MHz processor with 
64MB of RAM running the Linux operating system. Tests 
were performed on an unloaded system without the X-
windows server; only the applications and basic system 
service were running. Problem parameters were adjusted to 
use 80MB of data. Codes were tested first by comparing 
output on several input test cases. Table 1 shows the execution 
times. 

TABLE I 
COMPARED EXECUTION TIMES 

 Virtual Memory Comanche Ratio (V/C) 
stats 4:58 1:52 2.66 
window1 11:51 4:41 2.53 
stencil 33:49 25:17 1:34 
matvec 4:33 2:16 2.01 
A test was constructed to compare multitasking execution 

times. Two applications were executed simultaneously on four 
data files (see Table 2). The ratio of the VMM to Comanche 
execution performance more than doubled between the single 
out-of-core test and the multitasking out-of-core test. This 
means that system performance degrades much more rapidly 
for VMM than Comanche as more and more out-of-core 
applications are executed. 

TABLE II 
COMPARED MULTITASKING EXECUTION TIMES 

 Virtual Memory Comanche Ratio (V/C) 
matvec 1:26:18 15:40 5.51 

 1:23:53 15:04 5.57 
 1:22:37 15:00 5.51 
 1:26:04 15:41 5.49 

stats 1:26:14 15:48 5.46 
 1:23:46 15:17 5.41 
 1:23:15 15:18 5.41 
 1:26:00 15:47 5.49 

B. Elements in Many Rows Are Involved [26], [27] 
The original Comanche data structures are modified to allow a 
section of a row to be attached to the buffer instead of the 
whole row. A simple optimization based on a seeker/reaper 
paradigm is used. wavefront stands for an N x N square with 
tilted lines inside the array A in waves W1 through W2n-1. 
rhombus considers a square in which there are many equal-
sized “tall and lean” rhombuses. zigzag runs across every row. 
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The results reported in these three experiments, wavefront, 
rhombus, and zigzag, demonstrate that the modified 
Comanche API can achieve better I/O performance in cases 
where at each time, elements in many rows are involved and 
for each row, only a few elements are needed. 

B.1 wavefront 
WaveFront stands for a square with tilted lines inside, the 

array A in waves W1 through W2n-1 as follows (assume N = 4): 
W1      A(1,1) 
W2      A(2,1), A(1,2) 
W3      A(3,1), A(2,2), A(1,3) 
W4      A(4,1), A(3,2), A(2,3), A(1,4) 
W5      A(4,2), A(3,3), A(2,4) 
W6      A(4,3), A(3,4) 
W7      A(4,4) 

In general, we have: 
Wi   A(i, 1), A(i-1, 2),…, A(2, i-1), A(1, i)    for i = 1, …, 

N 
WN+j    A(N, j+1), A(N-1, j+2),…, A(j+2, N-1), A(j+1, N)  

for j =1, .., N-1 
We have run the algorithm as an out-of-core program 

written in the C language as produced by Comanche. The C 
compiler generates working code using the Comanche runtime 
system. The resulting code was executed  under the 
Window98 operating system with an Intel PentiumPro 500 
MHz processor and 96MB RAM, and under the Redhat 
Linux5.5 operating system on a single processor PC with an 
Intel PentiumPro 133MHz microprocessor and 48MB RAM.  

One set of experiments used a double precision matrix of 
size 3600 x 3600 involved in the WaveFront application. The 
total data set space is 3600 x 3600 x 8 = 103.68MB. Another 
set of experiment was run for the size 4000 x 4000 with a total 
data set space of 4000 x 4000 x 8 = 128MB. Data files were 
initialized with random values in the in the interval (-1, +1). 

Initial test runs demonstrated an important performance 
problem with the virtual memory mapping of files. When the 
first out-of-core tests were run, the windows system became 
very sluggish and it took a long time for applications to 
respond. The longer the execution time of the memory 
mapped code, the worse the problem became. In the 
Comanche tests this problem did not manifest itself. 

A test was constructed to analyze this behavior. Two 
applications were executed simultaneously (see Table 3). The 
Ratio of the VMM to Comanche execution performance 
almost doubled between the single out-of-core test and the 
multitasking out-of-core test. This means that the system 
performance degrades much more rapidly for VMM than for 
Comanche as more out-of-core applications are executed. 

 
TABLE  III 

WAVEFRONT MULTITASKING ON WINDOWS98 AND LINUX 5.5 
Operating 
System 

Data 
Set size 
(MB) 

Virtual 
Memory 
(second) 

Comanch
e 
(second) 

Ratio 
(V/C) 

Windows98 103.68 1191.3 108.2 11.7 
Window98 128 1522.9 149.9 10.16 
Linux 5.5 32 301.1 43.6 6.91 
B.2 rhombus 

This task traverses each rhombus, calculates the sum of all 
the elements on it, and writes the total value to a file. We 
assume that the length of the side of the square is many times 
larger than the rhombus’s width, in other words, each 
rhombus strides across all the rows, but straddles a very 
limited number of columns. We will begin from the element 
on the apex of the first rhombus and proceed toward its next 
row until we reach the last row in the square. During this 
process, it adds up all the elements that happen to be on the 
rhombus. After finishing traversing the first rhombus, we need 
to go back to the first row of the square again. We will choose 
the next element, which is the apex of the second rhombus and 
repeat the whole traversing process. We keep traversing every 
rhombus in the square until we finish the rightmost one. An 
important observation is that in the traversal we need almost 
every row even though we may need just one or two elements 
of each row and we need go back and reference some other 
elements of those rows again after finishing the previous 
traversal.  

We applied rotation to the optimization of the rhombus 
problem. We allocated two groups of subrows to the buffers, 
and we assumed that the width of the rhombus is less than the 
length of the subrow. Our purpose is that at any time the 
elements on each rhombus must be in the buffers. For each 
row on which rhombuses have elements, there are two groups 
of subrows.  They keep moving forward toward the next 
column while rotating their positions. Whenever the rhombus 
is to move out of subrow #1 into subrow #2, subrow #1 will 
be shifted right next to subrow #2; similarly for those subrows 
on the next rows, such as #3, #4, #5, #6, and so on. Every row 
on which rhombuses have elements repeats the same 
process.This movement gives the illusion that each rhombus is 
in the buffers all the time since the buffers are moving along 
as the rhombus references are moving. Buffer movement is 
always one step ahead of the rhombus reference movement, 
which guarantees that buffers always have the ability to 
provide the data that are soon to be referenced. At the end of 
the program, all subrows in buffers are released. We have run 
one set of experiments for a double precision matrix of size 
3600 x 3600 involved in the Rhombus application. The total 
data set space is 3600 x 3600 x 8 = 103MB. Data files were 
initialized with random values in the in the interval (-1, +1). 
The code is omitted due to limited space (see [26]). Two 
applications were executed simultaneously for the 
multitasking case. The time used for executing the whole 
program is measured in seconds. The ratio represents the time 
of the virtual memory version over the time of the Comanche 
version. Values greater than 1 favor Comanche while values 
less than 1 favor VMM. From Table 4, it is obvious that the 
system performance is optimizes dramatically under 
Comanche. 

TABLE IV 
RHOMBUS OUT-OF-CORE AND MULTITASKING EXPERIMENTS 

Execution 
Type 

Data Set 
Size (MB) 

Virtual 
Memory  
(second) 

Comanche 
(second) 

Ratio 
(V/C) 

Out-of-core 103  287.4 28.6 10.5 
Multitasked    103          619.1   28.9 21.42 
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B.3 zigzags 
Instead of a rhombus, we have zigzags in a square.  e 

traverse each zigzag, calculate the sum of the elements on the 
zigzag, and write the total to a file. The main difference 
between the rhombus case and the zigzag case is that rhombus 
may skip over some rows, but zigzag does not. Since rhombus 
has four tilted lines as its four sides, these lines may not 
always intersect a row at an element, and they could pass 
through the space between two neighbor elements. On the 
other hand, zigzag runs across every row. It always has 
elements on each row, even though the number of elements on 
each row may be different: sometimes the number is equal to 
the width of the zigzag, but for most rows, the number is 1.  

As in the rhombus test case, we applied rotation in our 
optimization. We allocated two groups of subrows in the 
buffers; they can rotate forward toward the next column. We 
assumed that the width of the zigzag is less than the length of 
the subrows.  Buffer movement is always one step ahead of 
the zigzag reference movement. 

We have run one set of experiments for a double precision 
matrix of size 4000 x 4000 involved in the zigzags 
application. The total data set space is 4000 x 4000 x 8 = 
125MB. Data files were initialized with random values in the 
in the interval (-1, +1). The code is omitted due to limited 
space (see [26]). From the experimental data in Table 5, we 
can see that the modified Comanche system outperforms 
VMM for this zigzag access pattern. 
 

TABLE V 
ZIGZAG OUT-OF-CORE AND MULTITASKING EXPERIMENTS 

Execution 
Type 

Data Set 
Size    
(MB) 

Virtual 
Memory  
(second) 

Comanche 
(second) 

Ratio 
(V/C) 

Out-of-core       125  640.2     426.8   1.5 
Multitasked          125        1361.9         516.8   2.64 

C. Matrices Involving Crossing Terms [24], [25], [28], 
[30] 

Matrix transpose and matrix multiplication have a crisscross 
access pattern. Traversal along one dimension implies 
simultaneous traversal along another dimension. When 
calculations on matrices involve crossing index terms, a 
common solution is blocking (tiling) [32]. Tiling plus a good 
process scheme may provide significant improvement. 

C.1 Matrix Transpose 
Matrix transpose (matran) involves cross index terms so 

without restructing terrible performance is to be expected. 
Tiling provides an improvement to both the virtual memory 
version and the Camanche version. Space is allocated for two 
submatrices or tiles of the original matrix.  Transposition is 
performed on tiles that represent the transpose of each order. 
The transposition can be done in-core and then the results are 
written all at once back to disk.  

We tested tiling by constructing the tiled extensions to 
Comanche; then we tested a special version of matran that 
was hand coded for the tiled extensions. We compared VMM 
and Comanche two systems for the volume of data transferred. 
The ratio of the total bytes transferred in the Comanche 

simulation to the total bytes transferred in the virtual memory 
simulation is reported in Table 6. The ratio of total bytes 
transferred has dropped to well below 1 which implies that the 
VMM matrix transpose code is not efficient; this is due of 
course to the fact that it has not been tiled. This illustrates the 
importance of data dependence analysis in making compiler 
driven I/O management feasible. There is a 700 fold 
improvement in performance, nearly three orders of 
magnitude.  

TABLE VI 
MATRAN BEFORE AND AFTER OPTIMIZATION 

Before After Ratio 
bw lat bw lat 

0.9 121.12 33.13 0.21 0.11 
0.8 73.43 18.80 0.12 0.06 
0.7 72.12 17.35 0.11 0.08 
0.6 74.27 16.50 0.10 0.07 
0.5 78.59 15.92 0.10 0.06 

C.1 Matrix Multiplication 
Assume that there are three matrices A, B, and C of size (N, 

N) on disk. We will multiply A by B and store the result in the 
matrix C. To store the matrices A, B, and C in memory 
requires 3N2 space. If N is large, the total amount of main 
memory available is less than the needed space of 3N2. If the 
data cannot be entirely loaded into memory, the problem 
becomes out-of-core. 

The traditional way of coding this in C is something like 
this: 

for (i = 0; i < N; i++) 
  for (j = 0; j < N; j++) 
          { C[i, j] = 0; 
      for (k = 0; k < N; k++) 
         C[i,j] += A[i,k] + B[k,j]; 

       } 

Note that although the same row of A is reused in the next 
iteration of the middle loop, a large volume of data used in the 
intervening iterations may be replaced. During processing, a 
virtual memory system would do much swapping, which is 
very time consuming. 

One solution to solve this out-of-core problem is to split 
each matrix into several sub-matrices (blocks) of size (M, M). 
Specially, if the dimensions of the matrix are divisible by the 
dimensions of the block we can use an algorithm suggested by 
the following observations. 

Assume M is one half of N; then each matrix can be split 
into four sub-matrices of size (N/2, N/2). Schematically we 
have: 

 A11   A12       X B11      B12    =    C11      C12 

      A21   A22        B21      B22    C21    C22 

 
The Cij’s are defined as follows: 
C11 = A11 * B11 + A12 * B21 
C12 = A11 * B12 + A12 * B22 
C21 = A21 * B11 + A22 * B21 
C22 = A21 * B12 + A22 * B22 

 
Assuming all Ci,j  are initialized to zero, the following 

instructions can be executed in any order: 
C11 = C11  + A11 * B11 
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C11 = C11  + A12 * B21 
C12 = C12  + A11 * B12 
C12 = C12  + A12 * B22 
C21 = C21  + A21 * B11 
C21 = C21  + A22 * B21 
C22 = C22  + A21 * B12 
C22 = C22  + A22 * B22 
A brute force approach might retrieve each of the twenty-

four sub-matrices (blocks) regardless of reusability. 
In out-of-core programming, we can sequence the 

instructions in order to reuse sub-matrices as often as possible. 
We use the Comanche runtime function block_attach when 
we need a block and block_release when we no longer need 
that block. 

Assume that the amount of available main memory is equal 
to four sub-matrix, 4 * N2/4. This means that we are able to 
keep a whole row of blocks of the A matrix, one block of the 
B matrix, and one block of the matrix C in memory during 
processing. The following sketches an efficient approach (see 
[1], [32]): 

C11 A11 B11                 //Attach C11,  A11, B11 
C11   B21 A12        // Release B11, attach  B21, A12 
C12 A11 B12            // Release B21, C11,  Attach C12, B12 
C12   B22 A12       // Release B12,  attach B22  
C21 A21 B11              // Release all, attach C21, A21, B11  
C21   B21 A22       // Release B11, attach  B21, A22  
C22 A21 B12              // Release B21, C21,  Attach C22, B12 
C22   B22 A22       // Release B12, attach  B22, A22  
                        // Release all 
In this scheme, we only retrieve eight blocks from disk and 

store four blocks to disk. We use a similar, but more 
complicated scheme if N is not divisible by M. 

We have implemented the general algorithm in an out-of-
core program written in the C language. The C compiler under 
Linux generates working code using the Comanche runtime 
system. On a single processor PC with a PentiumII, 333MHz 
microprocessor, the code was run under Redhat Linux 5.0 in 
command mode. The system used for the actual performance 
has 64MB of memory of which about 50MB are available to 
the program. 

We have run one set of experiments for multiplying 1024 x 
1024 double precision matrices. The total data set space is 
1024 x 1024 x 8 x 3=24MB. Another set of experiments was 
run for 2048 x 2048 matrices, with a total data set of 96MB. 
Data files are initialized with random values in the interval (-
1, +1). 

We have measured the performance of the matrix 
multiplication for different block sizes, namely 512 x 512, 256 
x 256, 128 x 128, 64 x 64, 32 x 32, 16 x 16, and 8 x 8. We 
applied these different block sizes to the data sets of 24MB 
and 96MB. The performance values are listed in Tables 7 and 
8.  

We observe that block multiplication uses only 24.5% to 
55.0% of the execution time of regular multiplication (VMM 
in Table 7). The one exception is for a laughably small block 
size (8 x 8). 

 
TABLE VII 

PERFORMANCE OF MATRIX MULTIPLICATION FOR DIFFERENT MATRIX SIZES 
Matrix size Elapsed 
1024x1024 31:05.7 
2048x2048 4:31:27 

 

D. Loop-Carried Dependences [25], [29], [30] 
Calculations on matrices often involve loop-carried 

dependences on columns, rows, and strides. Scientific 
computations such as Fast Fourier Transform (FFT) and 
Multi-grid use increasing and decreasing strides. Stepped 
programs traverse a two-dimensional grid using step sizes that 
vary by powers of two. This program imposes an important 
limitation on the simpler, row base API, as the stride grows 
beyond the size of a single page; reading an entire row will 
consist mostly of dead weight [24]. A naively implemented 
stepped program running under Comanche is considerably 
slower than under VMM, in real test cases [24]. The difficulty 
with this access pattern is that it is not just crisscross but also 
overlapped. When two adjacent loops have the same loop 
limits, they can sometimes be fused into a single loop. Tiling, 
subarray, loop fusing, the seeker/reaper paradigm, plus a 
good process scheme provide significant improvement.  
 

TABLE VIII 
PERFORMANCE FOR MATRICES OF SIZE 1024 X 1024, DIMENSIONS DIVISIBLE BY BLOCK SIZE 

Block Size 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 8 x 8
Elapsed 17:06.0 09:52.0 07:30.0 07:59.0 07:46.0 13:50.0 42:33.0
# of Seek 40,960 122,880 409,600 1,474,560 5,570,560 21,626,880 85,196,800
# of Read 30720 102,400 368,640 1,392,640 5,406,720 21,299,200 84,541,440
# of Write 10,240 20,480 40,960 81,920 163,840 327,680 655,360
Memory usage 8,388,863 3,146,199 1,311,911 593,607 292,103 186,759 267,911

 
TABLE IX 

PERFORMANCE FOR MATRICES OF SIZE 2048 X 2048,  DIMENSIONS DIVISIBLE BY BLOCK SIZE 
Block Size 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 8 x 8
Elapsed 2:30:42 1:40:08 1:09:51 1:32:20 1:10:02 2:02:11 6:41:08
# of Seek 245,760 819,200 2,949,120 11,141,120 43,253,760 170,393,600 676,331,520
# of Read 204,800 737,280 2,785,280 10,813,440 42,598,400 169,082,880 673,710,080
# of Write 40,960 81,920 163,840 327,680 655,360 1,310,720 2,621,440
Memory usage 12,583,383 5,244,071 2,363,079 1,127,687 592,263 467,591 927,879
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Since our program is out-of-core, we cannot load the whole 

array into memory. We tile the array into several super-rows 
(blocks). In each tile, we seek and attach two rows at a time. 
First, we attach two rows to perform the inner loop (column 
control) of step size 1. Then we have to fuse a stepped loop 
with row and column loop control to seek another row to 
compute. When we fuse the stepped loop into the row loop, 
we have to keep the original reference order. There is a loop 
dependence, for instance, before we can perform the step size 
2 calculations on rows 0 and 2, since both rows must have 
already completed the step size 1 calculation. 

Because of the loop dependence, we have to seek half a 
block plus 1 element ahead for each block. During the 
calculation, we release any row which is no longer needed in 
future calculations. After finishing the calculation on one 
super-row, we shrink the first row of the block into a sub-
array for further calculation. We perform stepped calculation 
on the sub-array starting with step size 1 and return the final 
results to the original rows. We use the reaper to release all 
the rows and terminate the calculation. We have added to 
Comanche a subarray data structure: 

To illustrate this process, assume we have a matrix of size 
12 x 12 and a block size of 4; the calculation is denoted as ⊗. 
Here is the complete program; we assume that Ri denotes row 
i, i = 0, 1,…,11: 

1. seek R0, attach it; 
2. attach R1 and R2; 
3. R0 ⊗ R1 step size 1, R1 ⊗ R2 step size 1; 
4. release R1;  
5. attach R3 and R4; 
6. R2 ⊗ R3 step size 1, R3 ⊗ R4 step size 1; 
7. release R3; 
8. R0 ⊗ R2 step size 2; 
9. attach R5 and R6; 
10. R4 ⊗ R5 step size1, R5 ⊗ R6 step size 1; 
11. release R5; 
12. R2 ⊗ R4 step size 2; 
13. release R2; 
14. put R0 into subarray; 
15. attach R7 and R8; 
16. R6 ⊗ R7 step size 1, R7 ⊗ R8 step size 1; 
17. release R7; 
18. R4 ⊗ R6 step size 2; 
19. attach R9 and R10; 
20. R8 ⊗ R9 step size 1, R9 ⊗ R10 step size 1; 
21. release R9; 
22. R6 ⊗ R8 step size 2; 
23. release R6; 
24. put R4 into subarray; 
25. attach R11; 
26. R10 ⊗ R11 step size 1; 
27. release R11; 
28. R8 ⊗ R10 step size 2; 
29. release R10; 

30. put R8 into subarray 
31. inside subarray R0 ⊗ R4 step size 1; 
32. inside subarray R4 ⊗ R8 step size 1; 
33. inside subarray R0 ⊗ R8 step size 2; 
34. write back to R0 and release R0; 
35. write back to R4 and release R4; 
36. write back to R8 and release R8. 

Note that we can change the execution order if this does not 
violate the data dependences. This schema performs tiled 
stepped calculations without subarrays. 

We have implemented the general algorithm suggested by 
these comments in an out-of-core program written in the C 
language. The C compiler under Linux generates working 
code using the Comanche runtime system. On a single 
processor PC with a PentiumII, 333MHz microprocessor, the 
code was run under Redhat Linux 5.0 in command mode. The 
system used for the actual performance has 64MB of memory, 
of which about 50MB are available to the program. 

We have run one set of experiments for a double precision 
matrix of size 3072 x 3072 involved in the stepped 
calculation. The total data set space is 3072 x 3072 x 8 = 
72MB. Another set of experiments was run for the size 6144 x 
6144 with a total data set space of 288MB. We also have run a 
set of experiments for multiple tasks with a data set space of 
128 MB. Data files were initialized with random values in the 
interval (-1, +1).  

To implement tiled stepped calculations, we divided the 
matrix into blocks. Each block has size M. Then we 
performed the stepped calculation sketched in Section 3.3. We 
mapped two rows of the matrix A into memory. After one 
round of calculation, we released the row which is no longer 
needed in future calculations. We started over for another row 
until the whole stepped calculations were finished. 

For a matrix of size N x N, the memory space needed (in 
bytes) is N x N x 8. If the block size is M, the number of 
needed buffers, B, is log2N + M/2 +3 and the size of the 
subarrays, S, is N/M x N/M. The memory space needed for 
our tiled subarray method is B x N + S. This method works 
for any block size that is a power of 2 and the matrix size is 
divisible by the block size.  

For comparison, we have measured the performance of the 
tiled stepped calculation for different block sizes. We ran 
experiments for the block sizes 512, 256, 128, 64, 32, 16, and 
8. We applied these different block sizes to the data sets of 
size 72MB and 288MB. The performance values are listed in 
Tables 11 and 12.  

From the experiments we see that tiling and subarray 
stepped calculations use only 21.8% to 49.7% of the execution 
time of the regular stepped calculation listed in Table 10. The 
experiments on different block and subarray sizes suggest that 
the block and subarray sizes do not play an important role in 
the performance.  

TABLE X 
PERFORMANCE OF REGULAR STEPPED CALCULATIONS 

Matrix Size Elapsed Page fault 
3072 x 3072 07:56.8 181,083 
6144 x 6144 1:06:52 1,320,021 
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TABLE XI  
PERFORMANCE OF TILED STEPPED CALCULATIONS WITH SUBARRAYS FOR MATRIX SIZE 3072 X 3072 

Block Size 512x 3072 256x3072 128x3072 64x3072 32x3072 16x3072 8x3072 
Elapsed 03:37.5 03:36.0 03:33.5 03:36.4 03:39.6 03:42.5 03:57.1 

Page fault 92,527 92,554 92,618 92,794 93,126 93,960 96,224 
# of  Seek 30,704 30,704 30,704 30,704 30,688 30,660 30,616 
# of  Read 15,352 15,352 15,352 15,352 15,344 15,330 15,308 
# of  Write 15,352 15,352 15,352 15,352 15,344 15,220 15,308 

Memory usage 456,927 584,307 872,319 1,507,515 2,940,759 6,384,819 15,509,391 
 

TABLE XII  
PERFORMANCE OF TILED STEPPED CALCULATIONS WITH SUBARRAYS FOR MATRIX SIZE 6144 X 6144 

Block Size 512 x 6144 256 x 6144 128 x 6144 64 x 6144 32 x 6144 16 x 6144         8 x 6144 
Elapsed 14:33.1 14:53.6 15:01.3 15:18.3 15:47.5 16:18.8          17:12.60
Page fault 369,202 369,260 369,587 370,374 371,785 375,100           383,936
# of  Seek 61,424 61,424 61,424 61,418 61,402 61,332 61,204
# of  Read 30,712 30,712 30,712 30,709 30,701 30,666 30,602
# of  Write 30,712 30,712 30,712 30,709 30,701 30,666 30,602
Memory usage 1,211,031 1,769,379 2,969,823 5,558,139 11,336,919 25,155,507 61,689,231

 
IV. CONCLUSION, LIMITATION, AND FUTURE 

STUDIES 
Comanche is a software system whose goal it is to reduce 

the amount of implicit I/O of a given program. Comanche’s 
approach is based on information collected by a typical high-
performance optimizing compiler, in particular dependence 
analysis; it attempts to restructure the program using standard 
code transformation techniques. Comanche was initially 
developed as a proof of concept and is at present essentially 
restricted to uniprocessors. It has been used to demonstrate 
convincingly the superiority of compiler-driven I/O 
management over VMM on a variety of scientific computation 
applications. 

The Comanche runtime system provides efficient out-of–
core programming without suffering from the disadvantages 
of virtual memory management. The system performs better 
than VMM in all test cases and uses significantly fewer 
system resources. We have combined key components on top 
of established compiler technology to build an application 
program interface (API). The compiler managed cache 
approach guides the runtime system in the management of 
resources. This division of responsibilities greatly simplifies 
the overall model while still supporting high performance. 
This approach proved successful as demonstrated by the 
prototype. 

 The Comanche prototype is sufficient as a proof that 
compiler managed I/O of out-of-core computations 
outperforms VMM. While the concept has been proven and 
key problems have been solved, several issues remain; 
therefore it is not quite ready for commercial use. 

We plan to reengineer Comanche to adapt it to the high-end 
computing needs of cutting-edge scientific and engineering 
work. This will be accomplished in transitioning from a proof-
of-concept to a generally usable tool with significant 
implications for usability, applicability, and reliability. 

A. Out-of-Core Parallel Computation  
The difficulty of handling out-of-core data limits the 

performance of parallel machines and distributed systems. I/O 

management is very important in distributed and parallel 
computing. The computation on out-of-core data often 
requires data which are not present in a processor’s memory, 
requiring I/O access as well as communication. The compiler 
should consider the individual communication requirements of 
each processor.  

 An area of future work is extending our concepts to 
multiprocessor and distributed computing environments 
involving many thousands of processors and integrating 
Comanche with the techniques designed to eliminate I/O costs 
originating from communication requirements of out-of-core 
parallel programs. 

B. Migration and Data Profiling 
Number An initial set of guidelines for migrating legacy 

codes into the Comanche architecture has been presented. 
Techniques for recognizing common programmer practices 
would be instrumental in effective migration of real world 
programs. In order to become more practical, a significant 
amount of effort in migration is needed.  

An I/O profile describes how much I/O has been performed 
and where; additionally it will represent information related to 
I/O wait time. The I/O profile may pinpoint where “too many” 
data transfers have occurred; therefore it provides guidance in 
improving the I/O behavior of a program. In this way, the I/O 
profile can help in predicting the amount of I/O and the run 
time required for a program similar to the one on which the 
I/O profile is based. A compile time data transfer analyzer 
computes an approximation on the number of data transfers 
between main and secondary memory when the Least 
Recently Used (LRU) replacement policy is applied. When a 
program requires too much I/O work, program restructuring to 
minimize the data transfers becomes necessary. This 
approximation can be used as guidance to transform I/O-
intensive programs to achieve better performance. 

We plan to integrate our work of I/O profiling [30] into the 
next version of Comanche. The analyzer automatically 
estimates the number of blocks or pages transfers that a 
program needs for execution, based on the parameters of the 
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system currently available. The data profile reflects the real 
behavior of the system when executing the program and can 
therefore be used to compare situations derived for the same 
program after restructuring.  

We also plan to integrate our work on automatic reduction 
of memory bank conflicts [33] into the improved version of 
Comanche. This is of particular concern when dealing with 
high-performance programming environments where bank 
conflicts are frequently underestimated and overlooked. A 
technique for supporting libraries is needed and developing a 
practical migration tool should be pursued. 
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