

Abstract—Most scientific programs have large input and output

data sets that require out-of-core programming or use virtual memory
management (VMM). Out-of-core programming is very error-prone
and tedious; as a result, it is generally avoided. However, in many
instance, VMM is not an effective approach because it often results
in substantial performance reduction. In contrast, compiler driven I/O
management will allow a program’s data sets to be retrieved in parts,
called blocks or tiles. Comanche (COmpiler MANaged caCHE) is a
compiler combined with a user level runtime system that can be used
to replace standard VMM for out-of-core programs. We describe
Comanche and demonstrate on a number of representative problems
that it substantially out-performs VMM. Significantly our system
does not require any special services from the operating system and
does not require modification of the operating system kernel.

Keywords—I/O Management, Out-of-core, Compiler, Tile
mapping.

I. INTRODUCTION
HE speed gap between processors and disks continues to
grow wider with the rapid increase in the performance of
processors and communication networks in the last two

decades. As a result, disk I/O has become a serious bottleneck
for many high performance computer systems. Hence, it is
critically important to be able to construct I/O minimal
programs [1].

The size and complexity of applications, both in the
scientific and the commercial world, have increased. While
the amount of memory available to high-end programs has
certainly increased over the past decades, it is a truism that
there is never enough memory. As a consequence,
programmers must frequently cope with situations where only
portions of the data sets can reside in main memory at any one
time while the rest is on disks. As the data sets required by
those applications exceed the capacity of the main memory,
the computation becomes an out-of-core computation. For
out-of-core applications, such as computational fluid
dynamics and seismic data processing, which involve a large
volume of data, the task of efficiently using the I/O subsystem
becomes extremely important. Processing out-of–core data
requires staging data in smaller granules that can be fit in the

Manuscript received Apr 2nd, 2008.
Wendy Zhang is with the Department of Computer Science & Industrial

Technology, Southeastern Louisiana University, Hammond, LA 70402, USA.
(phone: +1 985 549 3769; fax: +1 985 549 5532; e-mail: wzhang@selu.edu)

Ernst L. Leiss is with Computer Science Department, University of
Houston, Houston, TX 77204, USA (email: coscel@cs.uh.edu).

Huilin Ye is with School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, NSW 2308, Australia (email:
Huilin.Ye@newcastle.edu.au).

main memory. Data required for the entire computation have
to be fetched from files on disk.

Modern computers, including parallel computers, use a
sophisticated memory hierarchy consisting of caches, main
memory, and disk arrays, to narrow the gap between processor
and memory system performance. Much research has been
done on virtual memory management (VMM) and other
related operating systems (OS) concepts, I/O subsystem
hardware, and parallel file systems [2][3][4]. Each of those
approaches contributes to some degree to I/O performance,
but they all lack a global view of application behavior, which
limits their effectiveness.

Parallel I/O is a cost-effective way to address some I/O
issues. The wide availability of inexpensive powerful PC
clusters with high-speed networks makes parallel I/O a viable
approach. Parallel I/O subsystems [5][6][7] have increased the
I/O capabilities of parallel machines significantly but much
improvement is still needed to balance the CPU performance.
The variety (private disks, shared disks or a combination of
both) in the I/O architectures makes it difficult to design
optimization techniques that reduce the I/O cost. The problem
has become more severe since the size and complexity of
applications have increased tremendously [8].

Historically, this lack of memory has led to the introduction
of virtual memory management (VMM). OS designers offer
the handling of I/O activity via VMM. However, VMM
typically is quite oblivious to the peculiarities of a specific
program and will accommodate “unthinkingly” whatever
requests for the retrieval of pages or blocks of memory are
passed on to it. This lack of information about the behavior of
the executing program can result in very serious inefficiencies
[9]. Research in VMM considers the use of smart virtual
memory, techniques which reshape the data reference patterns
to exploit the given hardware facilities and system software,
and replacement policies. Overall these techniques assume a
considerable amount of help from the hardware.

In the last decade, a number of run-time libraries for out-of-
core computations and a few file interfaces have been
proposed. SIO [10] proposes a parallel file system-
programming interface, which is based on the separation of
programmer convenience functions from high performance
enabling functions. MPI-IO [11] attempts to provide a
portable interface for parallel machines. MPI-IO expresses
data partitions in terms of derived data types. The MPI-2
standard [12] has proposed a new, promising interface for
parallel I/O. Kotz [13] extends the traditional UNIX file I/O
interface for handling the parallel accesses to parallel disk
subsystems. The parallel file systems and run-time libraries
for out-of-core computations provide considerable I/O

Comanche – A Compiler-Driven I/O
Management System
Wendy Zhang, Ernst L. Leiss, and Huilin Ye

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1514International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

performance, but they require much effort from the user; also
they are not portable across a wide variety of parallel
machines with different disk subsystems.

 Current operating systems offer poor performance when a
numeric application's working set does not fit in main
memory. As a result, programmers who wish to solve “out-of-
core” problems efficiently are typically faced with the onerous
task of rewriting an application to use explicit I/O operations
(e.g., read/write) [14]. The difficulty of handling out-of-core
data and writing an efficient out-of-core program limits the
performance of high performance computers. Execution of
some out-of-core programs does not perform well when they
rely on the virtual memory management (VMM) system.
There is a clear need for compiler-directed explicit I/O for
out-of-core computations [15] [16] [17] [18] [19]
[20][21][22][23].

In this paper, we concentrate on the compiler-based
approach to the I/O problems. Compiler-driven I/O
management uses the information collected by a typical
optimizing compiler and applies valid code transformations to
the program, with the goal of minimizing the number of
blocks transferred between disk and main memory. The main
rationale behind this approach is the fact that the compiler has
unique information about the data needs of the program. The
compiler can examine the size and shape of the data and the
overall access pattern of the application. Compiler driven I/O
management can and should generate code to restructure out-
of-core data, computation, and the management of memory
resources. A compiler combined with a user level runtime
system can replace and outperform standard virtual memory
management for out-of-core problems [24][25]. It is important
to understand that this approach holds great promise for a
dramatic improvement in the overall execution time of
programs involving fairly regular computation structures, as
they are encountered in typical scientific computations. While
the techniques involved are also applicable to the transfer of
blocks of data between main memory and cache, our interest
is more in supplanting VMM, since the access characteristics
of main memory of a few nano-second (ns) and disk of tens of
milli-second (ms) imply a factor of improvement of seven
orders of magnitude while the cache scenario has a
improvement factor of less than 10 (i.e., one order of
magnitude).

Comanche (an acronym for COmpiler MANaged caCHE) is
a software system whose goal is to reduce the amount of
implicit I/O of a given program. Comanche’s approach is
based on information collected by a typical high-performance
optimizing compiler, in particular dependence analysis, and
attempts to restructure the program using standard code
transformation techniques. Comanche was developed in two
Ph. D. dissertations as a proof of concept [24][25]; as such,
the emphasis was somewhat limited and for the most part
restricted to uniprocessors. It was subsequently employed to
demonstrate quite convincingly the superiority of compiler-
driven I/O management over VMM on a variety of scientific
computation applications [26][27][28][29][30][31]. Section 2
will give more details about Comanche and the results
achieved with it are contained in Section 3. The limitation of

the system and future studies will be discussed in Section 4.

II. COMANCHE AS PROOF OF CONCEPT
I/O minimization is very dependent upon the efficiency of

transferring data between memory and disk and upon the
economy of using memory. Programs that use compact,
economical data sets will be able to exploit the limited
memory more efficiently. Improving data locality can impact
both bandwidth utilization and the economy of memory
utilization.

Our approach to I/O minimization is based on a compiler-
driven I/O management and runtime system named Comanche
(an acronym for COmpiler MANaged caCHE), which replaces
the virtual memory management (VMM). This approach is
based on a compiler managed cache, where the main memory
is viewed as the cache. In Comanche, the program is
restructured to move data automatically between main
memory and disk. Most importantly, the compiler is
responsible for directing the runtime system as to which data
can be transferred and when the data can be transferred.
Comanche is written in C and uses the standard I/O library
calls – fopen, fclose, fread, fwrite, and fseek. The runtime
system should compile under any compiler that supports these
calls. This solution is general purpose and platform
independent. The current Comanche system is running under
the RedHat 5.0 Linux operating system and Windows 2000 on
a PC with a PentiumPro (160Mhz or faster) processor and
64MB or more RAM.

The goal of Comanche is that the system performs at least
as well as VMM in all cases and significantly better in most
cases. The cooperation between compiler and runtime system
is a key factor, as is data dependence analysis, in locality
improving optimization. Our research aims at improving and
extending the applicability of the Comanche runtime system
supported application program interface (API), particularly,
the data mapping methodology and optimizing paradigm to
achieve high performance of I/O-intensive out-of-core
computations.

It is important to keep in mind that in contract to the OS,
the compiler has unique information about the data needs of
the program, the size and shape of arrays, and the access
patterns of the program. It is this information that typically is
not available to the operating system, which is customarily
charged with the management of I/O calls. Several minor
custom optimizations were necessary to achieve across the
broad acceptable performance for the programs in our test
suite. However, optimizations are invariably better understood
when they are applied to specific performance problems.

The standard entity in the Comanche runtime is a two-
dimensional array. Higher dimensions can be supported, or
else the accesses can be translated to two-dimensional
accesses. Data are assumed to be in row major layout on disk.
The ideal array is a square matrix. The Comanche runtime
system supports a simple application program interface
(API). There are four major operations in the API:
comanche_map, comanche_unmap, attach, and release.

comanche_map takes the file name, the number of rows, the
number of columns, the element size in bytes, a flag indicating

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1515International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

if the array is written and the maximum number of rows the
application will need to be resident at any given instance as its
arguments. It returns a handle to the data structure that
represents the array. This call manages the initialization of the
data structures needed to support the given array. It is called
before the first attach operation.

comanche_unmap takes as its single argument the handle
returned in the comanche_map call. It does not return any
value. This call will flush buffers and write everything back to
disk, if the flag for array write is set, before returning. It also
closes the files opened in comanche_map. This call must be
paired with a specific comanche_map for correct operation
and is called after the final release operation.

comanche_attach takes as its arguments the handle returned
in comanche_map, the index of the row to be attached, and a
write flag indicating that the row will be subsequently written.
It returns a pointer to the beginning of the row. This command
will always return the same pointer if repeated calls are made
with the same handle and row index. If the row is already in
memory, a reference counter is incremented. Otherwise, the
row is read from disk. If necessary, it will displace another
row whose reference count is zero.

comanche_release takes as its arguments the handle
returned in comanche_map and the index of the row to be
released. It does not return a value. This operation signals to
the runtime system that a previous call to comanche_attach is
released and, if the reference count is zero, the space can be
reclaimed. It must be paired with a specific comanche_attach
for correct execution of the system.

The attach and release operations tell the runtime that a
certain region is to be mapped into memory and that an
address to the cached data is to be returned. Unlike virtual
memory, or cache, the runtime system will not reclaim
memory that has been attached no matter how long it has been
since it was last referenced. The release operation is enforced
by the runtime system and the compiler manages the duration
of mapped data and ensures that the number of attach
operations will not over-fill the available memory before
subsequent release. Simple reference counting can be used to
keep track of how many outstanding release operations are
left. The attach and release directives combined with the
controlled access to memory allow aliases to be controlled.
The cooperation between the compiler and the runtime system
achieves a simple but efficient solution.

III. RESULTS ACHIEVED USING COMANCHE
A. Most Elements of One Row Are Used Continuously

[20], [24]
The main technique used in Comanche is the use of attach

and release directives. These instructions tell the runtime
system that the region is to be mapped into memory and then
an address to the called data is to be returned. Each time,
attach reads a whole row into the buffer in the main memory.
The runtime system will not reclaim the memory that has been
attached until it is explicitly released, no matter how long it
has been since it was last referenced. The compiler manages
the duration of mapped data and ensures the data locality in
memory. The rationale behind this methodology is the

assumption that the neighbor elements are known to be
referenced in the future. This method works well when most
elements of one row are used continuously and only elements
in a few rows are involved each time.

The test suite provides a large coverage of the access
patterns common to scientific programs. stats uses a one-
dimensional vector with sequential read access such as would
be found in a statistics collection program. window1 uses a
one-dimensional vector with a window of neighbors similar to
a finite difference computation in one dimension. matvec is a
standard matrix vector product, C = A x B. The compiler
manages the resource and accesses three two-dimensional
grids in a stencil pattern like that found in the 2D wave
equation. The system performs better than VMN and uses
significantly fewer system resources to do so.

The test suite was executed on a standard Unix workstation.
The workstation is a PentiumPro 200MHz processor with
64MB of RAM running the Linux operating system. Tests
were performed on an unloaded system without the X-
windows server; only the applications and basic system
service were running. Problem parameters were adjusted to
use 80MB of data. Codes were tested first by comparing
output on several input test cases. Table 1 shows the execution
times.

TABLE I
COMPARED EXECUTION TIMES

 Virtual Memory Comanche Ratio (V/C)
stats 4:58 1:52 2.66
window1 11:51 4:41 2.53
stencil 33:49 25:17 1:34
matvec 4:33 2:16 2.01
A test was constructed to compare multitasking execution

times. Two applications were executed simultaneously on four
data files (see Table 2). The ratio of the VMM to Comanche
execution performance more than doubled between the single
out-of-core test and the multitasking out-of-core test. This
means that system performance degrades much more rapidly
for VMM than Comanche as more and more out-of-core
applications are executed.

TABLE II
COMPARED MULTITASKING EXECUTION TIMES

 Virtual Memory Comanche Ratio (V/C)
matvec 1:26:18 15:40 5.51

 1:23:53 15:04 5.57
 1:22:37 15:00 5.51
 1:26:04 15:41 5.49

stats 1:26:14 15:48 5.46
 1:23:46 15:17 5.41
 1:23:15 15:18 5.41
 1:26:00 15:47 5.49

B. Elements in Many Rows Are Involved [26], [27]
The original Comanche data structures are modified to allow a
section of a row to be attached to the buffer instead of the
whole row. A simple optimization based on a seeker/reaper
paradigm is used. wavefront stands for an N x N square with
tilted lines inside the array A in waves W1 through W2n-1.
rhombus considers a square in which there are many equal-
sized “tall and lean” rhombuses. zigzag runs across every row.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1516International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

The results reported in these three experiments, wavefront,
rhombus, and zigzag, demonstrate that the modified
Comanche API can achieve better I/O performance in cases
where at each time, elements in many rows are involved and
for each row, only a few elements are needed.

B.1 wavefront
WaveFront stands for a square with tilted lines inside, the

array A in waves W1 through W2n-1 as follows (assume N = 4):
W1 A(1,1)
W2 A(2,1), A(1,2)
W3 A(3,1), A(2,2), A(1,3)
W4 A(4,1), A(3,2), A(2,3), A(1,4)
W5 A(4,2), A(3,3), A(2,4)
W6 A(4,3), A(3,4)
W7 A(4,4)

In general, we have:
Wi A(i, 1), A(i-1, 2),…, A(2, i-1), A(1, i) for i = 1, …,

N
WN+j A(N, j+1), A(N-1, j+2),…, A(j+2, N-1), A(j+1, N)

for j =1, .., N-1
We have run the algorithm as an out-of-core program

written in the C language as produced by Comanche. The C
compiler generates working code using the Comanche runtime
system. The resulting code was executed under the
Window98 operating system with an Intel PentiumPro 500
MHz processor and 96MB RAM, and under the Redhat
Linux5.5 operating system on a single processor PC with an
Intel PentiumPro 133MHz microprocessor and 48MB RAM.

One set of experiments used a double precision matrix of
size 3600 x 3600 involved in the WaveFront application. The
total data set space is 3600 x 3600 x 8 = 103.68MB. Another
set of experiment was run for the size 4000 x 4000 with a total
data set space of 4000 x 4000 x 8 = 128MB. Data files were
initialized with random values in the in the interval (-1, +1).

Initial test runs demonstrated an important performance
problem with the virtual memory mapping of files. When the
first out-of-core tests were run, the windows system became
very sluggish and it took a long time for applications to
respond. The longer the execution time of the memory
mapped code, the worse the problem became. In the
Comanche tests this problem did not manifest itself.

A test was constructed to analyze this behavior. Two
applications were executed simultaneously (see Table 3). The
Ratio of the VMM to Comanche execution performance
almost doubled between the single out-of-core test and the
multitasking out-of-core test. This means that the system
performance degrades much more rapidly for VMM than for
Comanche as more out-of-core applications are executed.

TABLE III

WAVEFRONT MULTITASKING ON WINDOWS98 AND LINUX 5.5
Operating
System

Data
Set size
(MB)

Virtual
Memory
(second)

Comanch
e
(second)

Ratio
(V/C)

Windows98 103.68 1191.3 108.2 11.7
Window98 128 1522.9 149.9 10.16
Linux 5.5 32 301.1 43.6 6.91
B.2 rhombus

This task traverses each rhombus, calculates the sum of all
the elements on it, and writes the total value to a file. We
assume that the length of the side of the square is many times
larger than the rhombus’s width, in other words, each
rhombus strides across all the rows, but straddles a very
limited number of columns. We will begin from the element
on the apex of the first rhombus and proceed toward its next
row until we reach the last row in the square. During this
process, it adds up all the elements that happen to be on the
rhombus. After finishing traversing the first rhombus, we need
to go back to the first row of the square again. We will choose
the next element, which is the apex of the second rhombus and
repeat the whole traversing process. We keep traversing every
rhombus in the square until we finish the rightmost one. An
important observation is that in the traversal we need almost
every row even though we may need just one or two elements
of each row and we need go back and reference some other
elements of those rows again after finishing the previous
traversal.

We applied rotation to the optimization of the rhombus
problem. We allocated two groups of subrows to the buffers,
and we assumed that the width of the rhombus is less than the
length of the subrow. Our purpose is that at any time the
elements on each rhombus must be in the buffers. For each
row on which rhombuses have elements, there are two groups
of subrows. They keep moving forward toward the next
column while rotating their positions. Whenever the rhombus
is to move out of subrow #1 into subrow #2, subrow #1 will
be shifted right next to subrow #2; similarly for those subrows
on the next rows, such as #3, #4, #5, #6, and so on. Every row
on which rhombuses have elements repeats the same
process.This movement gives the illusion that each rhombus is
in the buffers all the time since the buffers are moving along
as the rhombus references are moving. Buffer movement is
always one step ahead of the rhombus reference movement,
which guarantees that buffers always have the ability to
provide the data that are soon to be referenced. At the end of
the program, all subrows in buffers are released. We have run
one set of experiments for a double precision matrix of size
3600 x 3600 involved in the Rhombus application. The total
data set space is 3600 x 3600 x 8 = 103MB. Data files were
initialized with random values in the in the interval (-1, +1).
The code is omitted due to limited space (see [26]). Two
applications were executed simultaneously for the
multitasking case. The time used for executing the whole
program is measured in seconds. The ratio represents the time
of the virtual memory version over the time of the Comanche
version. Values greater than 1 favor Comanche while values
less than 1 favor VMM. From Table 4, it is obvious that the
system performance is optimizes dramatically under
Comanche.

TABLE IV
RHOMBUS OUT-OF-CORE AND MULTITASKING EXPERIMENTS

Execution
Type

Data Set
Size (MB)

Virtual
Memory
(second)

Comanche
(second)

Ratio
(V/C)

Out-of-core 103 287.4 28.6 10.5
Multitasked 103 619.1 28.9 21.42

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1517International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

B.3 zigzags
Instead of a rhombus, we have zigzags in a square. e

traverse each zigzag, calculate the sum of the elements on the
zigzag, and write the total to a file. The main difference
between the rhombus case and the zigzag case is that rhombus
may skip over some rows, but zigzag does not. Since rhombus
has four tilted lines as its four sides, these lines may not
always intersect a row at an element, and they could pass
through the space between two neighbor elements. On the
other hand, zigzag runs across every row. It always has
elements on each row, even though the number of elements on
each row may be different: sometimes the number is equal to
the width of the zigzag, but for most rows, the number is 1.

As in the rhombus test case, we applied rotation in our
optimization. We allocated two groups of subrows in the
buffers; they can rotate forward toward the next column. We
assumed that the width of the zigzag is less than the length of
the subrows. Buffer movement is always one step ahead of
the zigzag reference movement.

We have run one set of experiments for a double precision
matrix of size 4000 x 4000 involved in the zigzags
application. The total data set space is 4000 x 4000 x 8 =
125MB. Data files were initialized with random values in the
in the interval (-1, +1). The code is omitted due to limited
space (see [26]). From the experimental data in Table 5, we
can see that the modified Comanche system outperforms
VMM for this zigzag access pattern.

TABLE V
ZIGZAG OUT-OF-CORE AND MULTITASKING EXPERIMENTS

Execution
Type

Data Set
Size
(MB)

Virtual
Memory
(second)

Comanche
(second)

Ratio
(V/C)

Out-of-core 125 640.2 426.8 1.5
Multitasked 125 1361.9 516.8 2.64

C. Matrices Involving Crossing Terms [24], [25], [28],
[30]

Matrix transpose and matrix multiplication have a crisscross
access pattern. Traversal along one dimension implies
simultaneous traversal along another dimension. When
calculations on matrices involve crossing index terms, a
common solution is blocking (tiling) [32]. Tiling plus a good
process scheme may provide significant improvement.

C.1 Matrix Transpose
Matrix transpose (matran) involves cross index terms so

without restructing terrible performance is to be expected.
Tiling provides an improvement to both the virtual memory
version and the Camanche version. Space is allocated for two
submatrices or tiles of the original matrix. Transposition is
performed on tiles that represent the transpose of each order.
The transposition can be done in-core and then the results are
written all at once back to disk.

We tested tiling by constructing the tiled extensions to
Comanche; then we tested a special version of matran that
was hand coded for the tiled extensions. We compared VMM
and Comanche two systems for the volume of data transferred.
The ratio of the total bytes transferred in the Comanche

simulation to the total bytes transferred in the virtual memory
simulation is reported in Table 6. The ratio of total bytes
transferred has dropped to well below 1 which implies that the
VMM matrix transpose code is not efficient; this is due of
course to the fact that it has not been tiled. This illustrates the
importance of data dependence analysis in making compiler
driven I/O management feasible. There is a 700 fold
improvement in performance, nearly three orders of
magnitude.

TABLE VI
MATRAN BEFORE AND AFTER OPTIMIZATION

Before After Ratio
bw lat bw lat

0.9 121.12 33.13 0.21 0.11
0.8 73.43 18.80 0.12 0.06
0.7 72.12 17.35 0.11 0.08
0.6 74.27 16.50 0.10 0.07
0.5 78.59 15.92 0.10 0.06

C.1 Matrix Multiplication
Assume that there are three matrices A, B, and C of size (N,

N) on disk. We will multiply A by B and store the result in the
matrix C. To store the matrices A, B, and C in memory
requires 3N2 space. If N is large, the total amount of main
memory available is less than the needed space of 3N2. If the
data cannot be entirely loaded into memory, the problem
becomes out-of-core.

The traditional way of coding this in C is something like
this:

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 { C[i, j] = 0;
 for (k = 0; k < N; k++)
 C[i,j] += A[i,k] + B[k,j];

 }

Note that although the same row of A is reused in the next
iteration of the middle loop, a large volume of data used in the
intervening iterations may be replaced. During processing, a
virtual memory system would do much swapping, which is
very time consuming.

One solution to solve this out-of-core problem is to split
each matrix into several sub-matrices (blocks) of size (M, M).
Specially, if the dimensions of the matrix are divisible by the
dimensions of the block we can use an algorithm suggested by
the following observations.

Assume M is one half of N; then each matrix can be split
into four sub-matrices of size (N/2, N/2). Schematically we
have:

 A11 A12 X B11 B12 = C11 C12

 A21 A22 B21 B22 C21 C22

The Cij’s are defined as follows:
C11 = A11 * B11 + A12 * B21
C12 = A11 * B12 + A12 * B22
C21 = A21 * B11 + A22 * B21
C22 = A21 * B12 + A22 * B22

Assuming all Ci,j are initialized to zero, the following

instructions can be executed in any order:
C11 = C11 + A11 * B11

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1518International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

C11 = C11 + A12 * B21
C12 = C12 + A11 * B12
C12 = C12 + A12 * B22
C21 = C21 + A21 * B11
C21 = C21 + A22 * B21
C22 = C22 + A21 * B12
C22 = C22 + A22 * B22
A brute force approach might retrieve each of the twenty-

four sub-matrices (blocks) regardless of reusability.
In out-of-core programming, we can sequence the

instructions in order to reuse sub-matrices as often as possible.
We use the Comanche runtime function block_attach when
we need a block and block_release when we no longer need
that block.

Assume that the amount of available main memory is equal
to four sub-matrix, 4 * N2/4. This means that we are able to
keep a whole row of blocks of the A matrix, one block of the
B matrix, and one block of the matrix C in memory during
processing. The following sketches an efficient approach (see
[1], [32]):

C11 A11 B11 //Attach C11, A11, B11
C11 B21 A12 // Release B11, attach B21, A12
C12 A11 B12 // Release B21, C11, Attach C12, B12
C12 B22 A12 // Release B12, attach B22
C21 A21 B11 // Release all, attach C21, A21, B11
C21 B21 A22 // Release B11, attach B21, A22
C22 A21 B12 // Release B21, C21, Attach C22, B12
C22 B22 A22 // Release B12, attach B22, A22
 // Release all
In this scheme, we only retrieve eight blocks from disk and

store four blocks to disk. We use a similar, but more
complicated scheme if N is not divisible by M.

We have implemented the general algorithm in an out-of-
core program written in the C language. The C compiler under
Linux generates working code using the Comanche runtime
system. On a single processor PC with a PentiumII, 333MHz
microprocessor, the code was run under Redhat Linux 5.0 in
command mode. The system used for the actual performance
has 64MB of memory of which about 50MB are available to
the program.

We have run one set of experiments for multiplying 1024 x
1024 double precision matrices. The total data set space is
1024 x 1024 x 8 x 3=24MB. Another set of experiments was
run for 2048 x 2048 matrices, with a total data set of 96MB.
Data files are initialized with random values in the interval (-
1, +1).

We have measured the performance of the matrix
multiplication for different block sizes, namely 512 x 512, 256
x 256, 128 x 128, 64 x 64, 32 x 32, 16 x 16, and 8 x 8. We
applied these different block sizes to the data sets of 24MB
and 96MB. The performance values are listed in Tables 7 and
8.

We observe that block multiplication uses only 24.5% to
55.0% of the execution time of regular multiplication (VMM
in Table 7). The one exception is for a laughably small block
size (8 x 8).

TABLE VII

PERFORMANCE OF MATRIX MULTIPLICATION FOR DIFFERENT MATRIX SIZES
Matrix size Elapsed
1024x1024 31:05.7
2048x2048 4:31:27

D. Loop-Carried Dependences [25], [29], [30]
Calculations on matrices often involve loop-carried

dependences on columns, rows, and strides. Scientific
computations such as Fast Fourier Transform (FFT) and
Multi-grid use increasing and decreasing strides. Stepped
programs traverse a two-dimensional grid using step sizes that
vary by powers of two. This program imposes an important
limitation on the simpler, row base API, as the stride grows
beyond the size of a single page; reading an entire row will
consist mostly of dead weight [24]. A naively implemented
stepped program running under Comanche is considerably
slower than under VMM, in real test cases [24]. The difficulty
with this access pattern is that it is not just crisscross but also
overlapped. When two adjacent loops have the same loop
limits, they can sometimes be fused into a single loop. Tiling,
subarray, loop fusing, the seeker/reaper paradigm, plus a
good process scheme provide significant improvement.

TABLE VIII
PERFORMANCE FOR MATRICES OF SIZE 1024 X 1024, DIMENSIONS DIVISIBLE BY BLOCK SIZE

Block Size 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 8 x 8
Elapsed 17:06.0 09:52.0 07:30.0 07:59.0 07:46.0 13:50.0 42:33.0
of Seek 40,960 122,880 409,600 1,474,560 5,570,560 21,626,880 85,196,800
of Read 30720 102,400 368,640 1,392,640 5,406,720 21,299,200 84,541,440
of Write 10,240 20,480 40,960 81,920 163,840 327,680 655,360
Memory usage 8,388,863 3,146,199 1,311,911 593,607 292,103 186,759 267,911

TABLE IX

PERFORMANCE FOR MATRICES OF SIZE 2048 X 2048, DIMENSIONS DIVISIBLE BY BLOCK SIZE
Block Size 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 8 x 8
Elapsed 2:30:42 1:40:08 1:09:51 1:32:20 1:10:02 2:02:11 6:41:08
of Seek 245,760 819,200 2,949,120 11,141,120 43,253,760 170,393,600 676,331,520
of Read 204,800 737,280 2,785,280 10,813,440 42,598,400 169,082,880 673,710,080
of Write 40,960 81,920 163,840 327,680 655,360 1,310,720 2,621,440
Memory usage 12,583,383 5,244,071 2,363,079 1,127,687 592,263 467,591 927,879

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1519International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

Since our program is out-of-core, we cannot load the whole

array into memory. We tile the array into several super-rows
(blocks). In each tile, we seek and attach two rows at a time.
First, we attach two rows to perform the inner loop (column
control) of step size 1. Then we have to fuse a stepped loop
with row and column loop control to seek another row to
compute. When we fuse the stepped loop into the row loop,
we have to keep the original reference order. There is a loop
dependence, for instance, before we can perform the step size
2 calculations on rows 0 and 2, since both rows must have
already completed the step size 1 calculation.

Because of the loop dependence, we have to seek half a
block plus 1 element ahead for each block. During the
calculation, we release any row which is no longer needed in
future calculations. After finishing the calculation on one
super-row, we shrink the first row of the block into a sub-
array for further calculation. We perform stepped calculation
on the sub-array starting with step size 1 and return the final
results to the original rows. We use the reaper to release all
the rows and terminate the calculation. We have added to
Comanche a subarray data structure:

To illustrate this process, assume we have a matrix of size
12 x 12 and a block size of 4; the calculation is denoted as ⊗.
Here is the complete program; we assume that Ri denotes row
i, i = 0, 1,…,11:

1. seek R0, attach it;
2. attach R1 and R2;
3. R0 ⊗ R1 step size 1, R1 ⊗ R2 step size 1;
4. release R1;
5. attach R3 and R4;
6. R2 ⊗ R3 step size 1, R3 ⊗ R4 step size 1;
7. release R3;
8. R0 ⊗ R2 step size 2;
9. attach R5 and R6;
10. R4 ⊗ R5 step size1, R5 ⊗ R6 step size 1;
11. release R5;
12. R2 ⊗ R4 step size 2;
13. release R2;
14. put R0 into subarray;
15. attach R7 and R8;
16. R6 ⊗ R7 step size 1, R7 ⊗ R8 step size 1;
17. release R7;
18. R4 ⊗ R6 step size 2;
19. attach R9 and R10;
20. R8 ⊗ R9 step size 1, R9 ⊗ R10 step size 1;
21. release R9;
22. R6 ⊗ R8 step size 2;
23. release R6;
24. put R4 into subarray;
25. attach R11;
26. R10 ⊗ R11 step size 1;
27. release R11;
28. R8 ⊗ R10 step size 2;
29. release R10;

30. put R8 into subarray
31. inside subarray R0 ⊗ R4 step size 1;
32. inside subarray R4 ⊗ R8 step size 1;
33. inside subarray R0 ⊗ R8 step size 2;
34. write back to R0 and release R0;
35. write back to R4 and release R4;
36. write back to R8 and release R8.

Note that we can change the execution order if this does not
violate the data dependences. This schema performs tiled
stepped calculations without subarrays.

We have implemented the general algorithm suggested by
these comments in an out-of-core program written in the C
language. The C compiler under Linux generates working
code using the Comanche runtime system. On a single
processor PC with a PentiumII, 333MHz microprocessor, the
code was run under Redhat Linux 5.0 in command mode. The
system used for the actual performance has 64MB of memory,
of which about 50MB are available to the program.

We have run one set of experiments for a double precision
matrix of size 3072 x 3072 involved in the stepped
calculation. The total data set space is 3072 x 3072 x 8 =
72MB. Another set of experiments was run for the size 6144 x
6144 with a total data set space of 288MB. We also have run a
set of experiments for multiple tasks with a data set space of
128 MB. Data files were initialized with random values in the
interval (-1, +1).

To implement tiled stepped calculations, we divided the
matrix into blocks. Each block has size M. Then we
performed the stepped calculation sketched in Section 3.3. We
mapped two rows of the matrix A into memory. After one
round of calculation, we released the row which is no longer
needed in future calculations. We started over for another row
until the whole stepped calculations were finished.

For a matrix of size N x N, the memory space needed (in
bytes) is N x N x 8. If the block size is M, the number of
needed buffers, B, is log2N + M/2 +3 and the size of the
subarrays, S, is N/M x N/M. The memory space needed for
our tiled subarray method is B x N + S. This method works
for any block size that is a power of 2 and the matrix size is
divisible by the block size.

For comparison, we have measured the performance of the
tiled stepped calculation for different block sizes. We ran
experiments for the block sizes 512, 256, 128, 64, 32, 16, and
8. We applied these different block sizes to the data sets of
size 72MB and 288MB. The performance values are listed in
Tables 11 and 12.

From the experiments we see that tiling and subarray
stepped calculations use only 21.8% to 49.7% of the execution
time of the regular stepped calculation listed in Table 10. The
experiments on different block and subarray sizes suggest that
the block and subarray sizes do not play an important role in
the performance.

TABLE X
PERFORMANCE OF REGULAR STEPPED CALCULATIONS

Matrix Size Elapsed Page fault
3072 x 3072 07:56.8 181,083
6144 x 6144 1:06:52 1,320,021

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1520International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

TABLE XI
PERFORMANCE OF TILED STEPPED CALCULATIONS WITH SUBARRAYS FOR MATRIX SIZE 3072 X 3072

Block Size 512x 3072 256x3072 128x3072 64x3072 32x3072 16x3072 8x3072
Elapsed 03:37.5 03:36.0 03:33.5 03:36.4 03:39.6 03:42.5 03:57.1

Page fault 92,527 92,554 92,618 92,794 93,126 93,960 96,224
of Seek 30,704 30,704 30,704 30,704 30,688 30,660 30,616
of Read 15,352 15,352 15,352 15,352 15,344 15,330 15,308
of Write 15,352 15,352 15,352 15,352 15,344 15,220 15,308

Memory usage 456,927 584,307 872,319 1,507,515 2,940,759 6,384,819 15,509,391

TABLE XII
PERFORMANCE OF TILED STEPPED CALCULATIONS WITH SUBARRAYS FOR MATRIX SIZE 6144 X 6144

Block Size 512 x 6144 256 x 6144 128 x 6144 64 x 6144 32 x 6144 16 x 6144 8 x 6144
Elapsed 14:33.1 14:53.6 15:01.3 15:18.3 15:47.5 16:18.8 17:12.60
Page fault 369,202 369,260 369,587 370,374 371,785 375,100 383,936
of Seek 61,424 61,424 61,424 61,418 61,402 61,332 61,204
of Read 30,712 30,712 30,712 30,709 30,701 30,666 30,602
of Write 30,712 30,712 30,712 30,709 30,701 30,666 30,602
Memory usage 1,211,031 1,769,379 2,969,823 5,558,139 11,336,919 25,155,507 61,689,231

IV. CONCLUSION, LIMITATION, AND FUTURE

STUDIES
Comanche is a software system whose goal it is to reduce

the amount of implicit I/O of a given program. Comanche’s
approach is based on information collected by a typical high-
performance optimizing compiler, in particular dependence
analysis; it attempts to restructure the program using standard
code transformation techniques. Comanche was initially
developed as a proof of concept and is at present essentially
restricted to uniprocessors. It has been used to demonstrate
convincingly the superiority of compiler-driven I/O
management over VMM on a variety of scientific computation
applications.

The Comanche runtime system provides efficient out-of–
core programming without suffering from the disadvantages
of virtual memory management. The system performs better
than VMM in all test cases and uses significantly fewer
system resources. We have combined key components on top
of established compiler technology to build an application
program interface (API). The compiler managed cache
approach guides the runtime system in the management of
resources. This division of responsibilities greatly simplifies
the overall model while still supporting high performance.
This approach proved successful as demonstrated by the
prototype.

 The Comanche prototype is sufficient as a proof that
compiler managed I/O of out-of-core computations
outperforms VMM. While the concept has been proven and
key problems have been solved, several issues remain;
therefore it is not quite ready for commercial use.

We plan to reengineer Comanche to adapt it to the high-end
computing needs of cutting-edge scientific and engineering
work. This will be accomplished in transitioning from a proof-
of-concept to a generally usable tool with significant
implications for usability, applicability, and reliability.

A. Out-of-Core Parallel Computation
The difficulty of handling out-of-core data limits the

performance of parallel machines and distributed systems. I/O

management is very important in distributed and parallel
computing. The computation on out-of-core data often
requires data which are not present in a processor’s memory,
requiring I/O access as well as communication. The compiler
should consider the individual communication requirements of
each processor.

 An area of future work is extending our concepts to
multiprocessor and distributed computing environments
involving many thousands of processors and integrating
Comanche with the techniques designed to eliminate I/O costs
originating from communication requirements of out-of-core
parallel programs.

B. Migration and Data Profiling
Number An initial set of guidelines for migrating legacy

codes into the Comanche architecture has been presented.
Techniques for recognizing common programmer practices
would be instrumental in effective migration of real world
programs. In order to become more practical, a significant
amount of effort in migration is needed.

An I/O profile describes how much I/O has been performed
and where; additionally it will represent information related to
I/O wait time. The I/O profile may pinpoint where “too many”
data transfers have occurred; therefore it provides guidance in
improving the I/O behavior of a program. In this way, the I/O
profile can help in predicting the amount of I/O and the run
time required for a program similar to the one on which the
I/O profile is based. A compile time data transfer analyzer
computes an approximation on the number of data transfers
between main and secondary memory when the Least
Recently Used (LRU) replacement policy is applied. When a
program requires too much I/O work, program restructuring to
minimize the data transfers becomes necessary. This
approximation can be used as guidance to transform I/O-
intensive programs to achieve better performance.

We plan to integrate our work of I/O profiling [30] into the
next version of Comanche. The analyzer automatically
estimates the number of blocks or pages transfers that a
program needs for execution, based on the parameters of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1521International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

system currently available. The data profile reflects the real
behavior of the system when executing the program and can
therefore be used to compare situations derived for the same
program after restructuring.

We also plan to integrate our work on automatic reduction
of memory bank conflicts [33] into the improved version of
Comanche. This is of particular concern when dealing with
high-performance programming environments where bank
conflicts are frequently underestimated and overlooked. A
technique for supporting libraries is needed and developing a
practical migration tool should be pursued.

REFERENCES
[1] E. L. Leiss, Parallel and Vector Computing: A Practical Introduction,

McGraw-Hill, Inc. New York, 1995.
[2] B. Rullman, “Paragon Parallel File System”, External Product

Specification, Intel Supercomputer Systems Division, 1993.
[3] P. F. Corbett and D. G. Feitelson, “The Vesta Parallel File System”,

ACM Trans. Computer Systems, vol. 14, No. 3, pp. 225-264, 1996.
[4] N. Nieuwejaar and D. Kotz, “The Galley Parallel File System”, Parallel

Computing, vol. 23, No. 4-5, pp. 447-476, 1997.
[5] J. del Rosario and A. Choudhary, “High Performance I/O for Parallel

Computers: Problems and Prospects”, Computer, March 1994.
[6] D. G. Feitelson, P. F. Corbett, S. J. Baylor, and Y. Hsu, “Parallel I/O

Subsystems in Massively Parallel Supercomputers”, IEEE Parallel and
Distributed Technology, pp. 33-47, Fall 1995.

[7] Y. Chen, and M. Winslett, “Automated Tuning of Parallel I/O Systems:
An Approach to Portable I/O Performance for Scientific Applications”,
IEEE Transactions on Software Engineering, vol. 26, No. 4, April 2000.

[8] “High Performance Computing and Communications: Grand Challenges
1993 Report”. A Report by the Committee of Physics, Mathematical and
Engineering Sciences, Federal Coordinating Council for Science,
Engineering and Technology.

[9] E. L. Leiss and O. G. Johnson: “Advances in High-Performance
Processing of Seismic Data”, in Supercomputers in Seismic Exploration,
E. Eisner (ed.), Pergamon Press, Oxford, 1988.

[10] “The Scalable I/O Low-level API: A Portable Programming Interface for
Parallel File Systems”, Presentation in Supercomputing’96, Philadelphia,
PA, 1996.

[11] P. F. Corbert, D. Fietelson, S. Fineberg, Y. Hsu, B. Nitsberg, J. Prost, M.
Snir, B. Traversat, and P. Wong, “Overview of the MPI-IO Parallel I/O
Interface”, in Proceedings of 3rd Workshop on I/O in Parallel and
Distributed System, IPPS’95, Santa Barbara, CA, April, 1995.

[12] Message Passing Interface Forum, “MPI-2: Extensions to the Message-
Passing Interface”, http://www.mpi-forum.org/docs/ docs/html. 1997.

[13] D. Kotz, “Multiprocessor File System Interfaces”, in Proceedings of the
2nd International Conference on Parallel and Distributed Information
Systems, pp. 194-201, 1993.

[14] A. D. Brown, T. C. Mowry, and O. Krieger, “Compiler-based I/O
prefetching for out-of-core applications”, ACM Transactions on
Computer Systems, vol. 19, Issue 2, pp. 111-170, May 2001.

[15] S. Carr, K. McKenley, and C.-W. Tseng, “Compiler Optimizations for
Improving Data Locality”, in Proceedings of 6th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VI), San Jose, CA, October 1994.

[16] H. Han, G. Rivera, and C.-W. Tseng, “Compiler and Run-time Support
for Improving Locality in Scientific Codes (Extended Abstract)”, in
Proceedings of Languages and Compilers for Parallel Computing,
Twelfth International Workshop, Lecture Notes in Computer Science,
Springer-Verlag, 1999.

[17] M. Kandemir, A. Choudhary, J. Ramanujam, and R. Bordawekar,
“Compilation Techniques for Out-of-Core Parallel Computations”,
Parallel Computing, vol. 24, No 3-4, pp. 597-628, June 1998.

[18] M. Kandemir, “Compiler-Directed Collective-I/O”, IEEE Transactions
on Parallel and distributed Systems, vol. 12, No. 12, December 2001.

[19] M. Paleczny, K. Kennedy, and C. Koelbel, “Compiler Support for Out-
of-Core Arrays on Data Parallel Machines”, in Proceedings of the 5th
Symposium on the Frontiers of Massively Parallel Computation, pp.
110-118, McLean, VA, February 1995.

[20] E. M. Robinson, D. Davison, and E. L. Leiss, “I/O Minimization in a
Genetic Sequencing Framework”, International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA'97),
Las Vegas, Nevada, June 1997.

[21] E. Robinson and E. L. Leiss, “Page Utilization in Fortran and C
Programs”, 1998 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), Las Vegas,
Nevada, July 1998.

[22] E. M. Robinson and E. L. Leiss, “Compiler Managed Cache”, in
Proceedings of Conferencia Latinoamérica de Informática (CLEI
PANEL'98), pp. 301-312, Quito, Ecuador, October, 1998.

[23] Y.-C. Wu and E. L. Leiss, “Program-Based Reduction of Memory Bank
Conflicts: A Software Tool”, in Proceedings of Conferencia
Latinoamérica de Informática (CLEI PANEL'97), pp. 67-76, Viña del
Mar, Chile, November 1997.

[24] E. M. Robinson, “Compiler Driven I/O Management”, Ph.D.
Dissertation, Department of Computer Science, University of Houston,
1998.

[25] W. Zhang, “Compiler Driven I/O Minimization”, Ph. D. dissertation,
Department of Computer Science, University of Houston, 2001.

[26] X. Feng, “I/O Performance Improvement through the Use of Compiler-
Driven Memory Management”, Master Thesis, Department of Houston,
University of Houston, May 2000.

[27] X. Feng, W. Zhang, and E.L. Leiss, “I/O Performance Improvement
through the Use of Compiler-Driven Memory Management” in
Proceedings of the XXVII Conferencia Latinoamericana de Information
(CLEI 2002), October 2002.

[28] W. Zhang and E. L. Leiss, “Block Mapping - A Compiler Driven I/O
Management Study”, in Proceedings of the 2000 International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’2000), pp. 1207-1214, Las Vegas, Nevada, June
2000.

[29] W. Zhang and E. L. Leiss, “A Compiler Driven Out-of-Core
Programming Approach for Optimizing Data Locality in Loop Nests”, in
Proceedings of the 2001 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’2001),
Las Vegas, Nevada, June, 2001.

[30] W. Zhang and E. L. Leiss, “Compiler-Driven I/O Minimization”, CLEI
2001 - Conferencia Latinoamérica de Informática, Mérida, Venezuela,
September 2001.

[31] W. Zhang and E. L. Leiss, “Compile Time Data Transfer Analysis”, 5th
Int'l Conf. on Algorithms and Architectures for Parallel Processing
(ICA3PP2002), IEEE Computer Society Press, 2002.

[32] A.C. McKellar and E. G. Coffman, Jr. “Organizing Matrices and Matrix
Operations for Paged Memory Systems”, pages 153-169,
Communications of the ACM, March 1969.

[33] C.-W. Tseng, J. Anderson, M. Martonosi, and M. Hall, “Unified
Compilation Techniques for Shared and Distributed Address Space
Machines”, in Proceedings of 1995 International Conference on
Supercomputing (ICS’93), Barcelona, Spain, July 1995.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1522International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

92
0.

pd
f

