The Number of Rational Points on Elliptic Curves

\[y^2 = x^3 + b^2 \] Over Finite Fields

Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract—Let \(p \) be a prime number, \(\mathbb{F}_q \) be a finite field and let \(\mathbb{Q}_p \) denote the set of quadratic residues in \(\mathbb{F}_p \). In the first section we give some notations and preliminaries from elliptic curves. In the second section, we consider some properties of rational points on elliptic curves \(E_{p,b} : y^2 = x^3 + b^2 \) over \(\mathbb{F}_p \), where \(b \in \mathbb{F}_p \). Recall that the order of \(E_{p,b} \) over \(\mathbb{F}_p \) is \(p + 1 \) if \(p \equiv 5 (\text{mod} \ 6) \). We generalize this result to any field \(\mathbb{F}_q \) for an integer \(n \geq 2 \). Further we obtain some results concerning the sum \(\sum_{x \in \mathbb{F}_p} \mathbb{E}_{p,b}(\mathbb{F}_p) \) and \(\sum_{x \in \mathbb{F}_p} \mathbb{Q}_{p,b}(\mathbb{F}_p) \), the sum of \(x \)- and \(y \)-coordinates of all points \((x,y)\) on \(E_{p,b} \), and also the the sum \(\sum_{(x,y) \in \mathbb{E}_{p,b}(\mathbb{F}_p)} \), the sum of points \((x,0)\) on \(E_{p,b} \).

Keywords—elliptic curves over finite fields, rational points on elliptic curves.

I. INTRODUCTION

Mordell began his famous paper [8] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves. The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [4,6,7], for factoring large integers [5] and for primality proving [2,3]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat’s Last Theorem [13].

Let \(q \) be a positive integer, \(\mathbb{F}_q \) be a finite field and let \(\mathbb{F}_q \) denote the algebraic closure of \(\mathbb{F}_q \) with \(\text{char} \mathbb{F}_q \neq 2, 3 \). An elliptic curve \(E \) over \(\mathbb{F}_q \) is defined by an equation

\[E : y^2 = x^3 + ax + b, \]

where \(a, b \in \mathbb{F}_q \) and \(4a^3 + 27b^2 \neq 0 \). We can view an elliptic curve \(E \) as a curve in projective plane \(\mathbb{P}^2 \), with a homogeneous equation \(y^2z = x^3 + axz^2 + b^2z^3 \), and one point at infinity, namely \((0,1,0)\). This point \(\infty \) is the point where all vertical lines meet. We denote this point by \(O \). Let

\[E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^3 + ax + b\} \cup \{O\} \]

denote the set of rational points \((x,y)\) on \(E \). Then it is a subgroup of \(E \). The order of \(E(\mathbb{F}_q) \), denoted by \#\(E(\mathbb{F}_q) \), is defined as the number of the rational points on \(E \) and is given by

\[\#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} \left(1 + \frac{x^3 + ax + b}{\mathbb{F}_q}\right) \]

\[= q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + ax + b}{\mathbb{F}_q}\right), \]

where \(\left(\frac{\cdot}{\mathbb{F}_q}\right) \) denotes the Legendre symbol (for further details on rational points on elliptic curves see [9,10,12]).

Let \(p \) be a prime number and let \(q = p^n \) for integer \(n > 1 \). Let

\[N = q + 1 - a. \]

Then \(a \) is called the trace of Frobenius and satisfies the inequality

\[|a| \leq 2\sqrt{q}, \]

known as the Hasse interval [12, p. 91]. Then there is an elliptic curve \(E \) defined over \(\mathbb{F}_q \) such that \#\(E(\mathbb{F}_q) \) \(= N \) if and only if \(a \) satisfies (3) and also satisfies one of the following (see [12, p. 92]):

1) \(\gcd(a,p) = 1 \)
2) \(n \) is even and \(a = \pm 2\sqrt{q} \)
3) \(n \) is even, \(p \) is not equivalent to \(1 (\text{mod} \ 3) \) and \(a = \pm \sqrt{q} \)
4) \(n \) is odd, \(p = 2, 3 \) and \(a = \pm p^{(n+1)/2} \)
5) \(n \) is even, \(p \) is not equivalent to \(1 (\text{mod} \ 4) \) and \(a = 0 \)
6) \(n \) is odd and \(a = 0 \)

The formula (1) can be generalized to any field \(\mathbb{F}_q^n \) for an integer \(n \geq 2 \). Let \#\(E(\mathbb{F}_q^n) = q^{1 + 1 - a} \) and let

\[X^2 - aX + q = (X - \alpha)(X - \beta). \]

Then the order of \(E \) over \(\mathbb{F}_q^n \) is

\[\#E(\mathbb{F}_q^n) = q^n + 1 - (\alpha^n + \beta^n). \]

II. THE NUMBER OF RATIONAL POINTS ON ELLIPTIC CURVE \(y^2 = x^3 + b^2 \) OVER \(\mathbb{F}_p \)

In [11], the third author consider the elliptic curves \(E : y^2 = x^3 - t^2x \) over a finite field \(\mathbb{F}_p \), where \(p \) is a prime number and \(t \in \mathbb{F}_p^* \). He obtain some results concerning rational points on \(E \).

In the present paper we consider the elliptic curves

\[E_{p,b} : y^2 = x^3 + b^2 \]

over \(\mathbb{F}_p \). Recall that if \(p \equiv 5 (\text{mod} \ 6) \), then \#\(E(\mathbb{F}_p) = p + 1 \). But when \(p \equiv 1 (\text{mod} \ 6) \), then there is no rule for \#\(E(\mathbb{F}_p) \). Therefore we assume that \(p \equiv 5 (\text{mod} \ 6) \) throughout the paper.
First we give the following theorem.

Theorem 2.1: Let \(p \equiv 5(\text{mod} 6) \) be a prime. If \((p-1,3) = 1\), then the congruence
\[
x^3 \equiv b(\text{mod} \ p)
\]
has a solution for each \(b \in \mathbb{F}_p \), that is every \(b \in \mathbb{F}_p \) is a cubic residue.

Proof: Let \(p \equiv 5(\text{mod} 6) \). Then \(p = 5 + 6q \) for some \(q \in \mathbb{Z} \). Then
\[
(p - 1,3) = (6q + 4,3) = 1.
\]
Hence we have either \(p = 3 \) or \(p \equiv 2(\text{mod} 3) \). So if \(p = 3 \), then
\[
0^3 \equiv 0(\text{mod} 3), \quad 1^3 \equiv 1(\text{mod} 3), \quad 2^3 \equiv 2(\text{mod} 3)
\]
in \(\mathbb{F}_3 \). Therefore every \(b \in \mathbb{F}_3 \) is a cubic residue.

If \(p \equiv 2(\text{mod} 3) \), then \(p = 2 + 3q \) for \(q \in \mathbb{Z} \). Therefore the norm of \(p \) is
\[
|p| = p \overline{p} = (2 + 3q)(2 + 3q) = 9q^2 + 12q + 4
\]
and hence
\[
\frac{|p| - 1}{3} = 3q^2 + 4q + 1.
\]
So we have
\[
b^{\frac{|p| - 1}{3}} = b^{3q^2 + 4q + 1}.
\]
Hence \(b^{p-1} \equiv 1(\text{mod} \ p) \) by Fermat’s Little Theorem. So
\[
b^{p-1} \equiv b^{3q^2 + 4q + 1} \equiv 1(\text{mod} \ p).
\]
Consequently
\[
b^{\frac{|p| - 1}{3}} \equiv b^{3q^2 + 4q + 1} + 1 \equiv 1(\text{mod} \ p).
\]
Now let \(1 \leq b \leq p - 1 \) and let \(0 \leq q \leq p - 2 \). Let \(g \) be a primitive root modulo \(p \) such that \(g^0 \equiv b(\text{mod} \ p) \). Hence there are integers \(u \) and \(v \) such that
\[
3u + (p - 1)v = 1 \tag{7}
\]
since \((3,p-1) = 1 \). If we take \(x = uq \) and \(y = vq \), then \((7) \) becomes
\[
3x + (p - 1)y = q.
\]
Therefore we get
\[
b \equiv g^3(\text{mod} \ p)
\]
\[
\equiv g^{3x + (p-1)y}(\text{mod} \ p)
\]
\[
\equiv (g^3)^3(g^{p-1})^y(\text{mod} \ p)
\]
\[
\equiv (g^3)^3(\text{mod} \ p)
\]
since \(g^{p-1} \equiv 1(\text{mod} \ p) \), that is, \(b \) is a cubic residue modulo \(p \). Further \(0^3 \equiv 0(\text{mod} \ p) \). Therefore all elements of \(\mathbb{F}_p \) are cubic residues.

We know that the order of \(E_{p,b} : y^2 = x^3 + b^2 \) over \(\mathbb{F}_p \) is \(\#E_{p,b}(\mathbb{F}_p) = p + 1 \). Now we generalize this result to \(\mathbb{F}_{p^n} \) for a positive integer \(n \geq 2 \).

Theorem 2.2: Let \(E_{p,b} : y^2 = x^3 + b^2 \) be an elliptic curve over \(\mathbb{F}_p \). Then
\[
\#E_{p,b}(\mathbb{F}_{p^n}) = \begin{cases}
(p^2 - 1)^2 & \text{if } n \equiv 0(\text{mod} 4) \\
p^n + 1 & \text{if } n \equiv 1, 3(\text{mod} 4) \\
(p^n + 1)^2 & \text{if } n \equiv 2(\text{mod} 4).
\end{cases}
\]

Proof: Let \(E_{p,b} : y^2 = x^3 + b^2 \). Then the order of \(E_{p,b} \) over \(\mathbb{F}_p \) is \(\#E_{p,b}(\mathbb{F}_p) = p + 1 \). Therefore \(a = 0 \) by (2). Then
\[
X^2 + p = (X - i\sqrt{p})(X + i\sqrt{p})
\]
\[
= (X - a)(X - \beta)
\]
for \(\alpha = i\sqrt{p} \) and \(\beta = -i\sqrt{p} \).

Let \(n \equiv 0(\text{mod} 4) \), say \(n = 4k \) for an integer \(k \geq 1 \). Then
\[
\alpha^n + \beta^n = (i\sqrt{p})^{4k} + (-i\sqrt{p})^{4k} = 2^{4k} + 2^{4k} = 2p^{2k}
\]
\[
= 2p^{2k}.
\]
So
\[
\#E_{p,b}(\mathbb{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n)
\]
\[
= p^n + 1 - 2p^{2k}
\]
\[
= (p^{2k} - 1)^2
\]
by (5).

Let \(n \equiv 1(\text{mod} 4) \), say \(n = 1 + 4k \). Then
\[
\alpha^n + \beta^n = (i\sqrt{p})^{4k+1} + (-i\sqrt{p})^{4k+1} = 2^{4k+1} + 2^{4k+1} = 0
\]
\[
= 0.
\]
So \(\#E_{p,b}(\mathbb{F}_{p^n}) = p^{n+1} \).

Let \(n \equiv 2(\text{mod} 4) \), say \(n = 2 + 4k \). Then
\[
\alpha^n + \beta^n = (i\sqrt{p})^{4k+2} + (-i\sqrt{p})^{4k+2} = 2^{4k+2} + 2^{4k+2} = -2p^{2k+1}
\]
\[
= -2p^{2k+1}
\]
\[
= -2p^{2k+1}.
\]
So \(\#E_{p,b}(\mathbb{F}_{p^n}) = p^{n+1} + 2p^{2k} = (p^{2k} + 1)^2 \).

Finally, let \(n \equiv 3(\text{mod} 4) \), say \(n = 3 + 4k \). Then
\[
\alpha^n + \beta^n = (i\sqrt{p})^{4k+3} + (-i\sqrt{p})^{4k+3} = 2^{4k+3} + 2^{4k+3} = -i(\sqrt{p})^{4k+3}
\]
\[
= 0.
\]
So \(\#E_{p,b}(\mathbb{F}_{p^n}) = p^{n+1} \).

Example 2.1: Let \(E_{11,2} : y^2 = x^3 + 4 \) be an elliptic curve over \(\mathbb{F}_{11} \). Then the order of \(E_{11,2} \) over \(\mathbb{F}_{11^n} \) is
\[
\#E_{11,2}(\mathbb{F}_{11^n}) = \begin{cases}
214329600 & \text{for } n = 8 \\
2357947692 & \text{for } n = 9 \\
285311670612 & \text{for } n = 11 \\
25937746704 & \text{for } n = 10.
\end{cases}
\]
Let \([x]\) and \([y]\) denote the \(x\)-coordinates and \(y\)-coordinates of the points \((x, y)\) on \(E_{p,b}\), respectively. Then we have the following results.

Theorem 2.3: The sum of \([x]\) on \(E_{p,b}\) is

\[
\sum_{[x]} E_{p,b}(F_p) = \sum_{[x]} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)x.
\]

Proof: We know that

\[
\left(\frac{x^3 + b^2}{F_p}\right) = \begin{cases}
0 & \text{if } x^3 + b^2 = 0 \\
1 & \text{if } x^3 + b^2 \in Q_p \\
-1 & \text{if } x^3 + b^2 \notin Q_p.
\end{cases}
\]

Let \(x^3 + b^2 = 0\). Then \(x^3 + b^2 = 0\). Hence the cubic equation \(x^3 + b^2 = 0\) has only one solution \(x = \sqrt[3]{-b^2}\). Therefore

\[
y^2 \equiv 0 \pmod{p} \iff y \equiv 0 \pmod{p}.
\]

So for such a point \(x\), we have a point \((x, 0)\) on \(E_{p,b}\). Therefore we get \((x + 0).x = x\) is added to the sum.

Let \(x^3 + b^2 = 1\). Then \(x^3 + b^2\) is a square in \(F_p\). Let \(x^3 + b^2 = t^2\) for any \(t \in F_p\). Then

\[
y^2 \equiv t^2 \pmod{p} \iff y \equiv \pm t \pmod{p},
\]

that is, for any point \((x, t)\) on \(E_{p,b}\), the point \((x, -t)\) is also on \(E_{p,b}\). Therefore for each point \((x, y)\), we have \((1 + 1)x = 2x\) is added to the sum.

Let \(x^3 + b^2 = -1\). Then \(x^3 + b^2\) is not a square in \(F_p\). Then the equation \(y^2 \equiv x^3 + b^2 \pmod{p}\) has no solution. Therefore for each point \((x, y)\) we have \((1 + (-1))x = 0\).

Theorem 2.4: The sum of \([y]\) on \(E_{p,b}\) is

\[
\sum_{[y]} E_{p,b}(F_p) = \frac{p^2 - p}{2}.
\]

Proof: Let \(E_{p,b} : y^2 = x^3 + b^2\) be an elliptic curve over \(F_p\). The cubic equation \(x^3 + b^2 = 0\) has a solution \(x = \sqrt[3]{-b^2}\). For the other values of \(x\), we have both \(x\) and \(-x\). One of these gives two points. The one makes \(x^3 + b^2 = 1\), i.e. \(\left(\frac{x^3 + b^2}{F_p}\right) = 1\). There are \(\frac{p^2 - 1}{2}\) points \(x\) in \(F_p\) such that \(x^3 + b^2\) is a square. Let \(x^3 + b^2 = t^2\) for any \(t \in F_p\). Then we have

\[
y^2 \equiv t^2 \pmod{p} \iff y \equiv \pm t \pmod{p},
\]

Hence \(y = t\) and \(y = p - t\). So the sum of these values of \(y\) is \(t + (p - t) = p\). We know that there are \(\frac{p^2 - 1}{2}\) points \(x\) in \(F_p\) such that \(y^2 \equiv x^3 + b^2\) is a square. Therefore, the sum of ordinates of all points \((x, y)\) is \(p \frac{p - 1}{2}\), that is

\[
\sum_{[y]} E_{p,b}(F_p) = \frac{p^2 - p}{2}.
\]

Theorem 2.5: Let \(E_{p,b}\) denote the set of the family of all elliptic curves over \(F_p\). Then

\[
\sum_{b \in F_p} \# E_{p,b}(F_p) = \frac{p^2 - 1}{2}.
\]

Proof: Note that there are \(\frac{p^2 - 1}{2}\) elliptic curves \(E_{p,b} : y^2 = x^3 + b^2\) over \(F_p\), and also the order of \(E_{p,b}\) over \(F_p\) is \(p + 1\), i.e. \(\# E_{p,b}(F_p) = p + 1\). Therefore the total number of the points \((x, y)\) on all elliptic curves \(E_{p,b}\) in \(E_{p,b}\) over \(F_p\) is

\[
\sum_{b \in F_p} \# E_{p,b}(F_p) = (p + 1)\frac{p - 1}{2} = \frac{p^2 - 1}{2}.
\]

We can give the following two theorems for the rational points \((x, 0)\) on \(E_{p,b}\).

Theorem 2.6: Let \(E_{p,b} : y^2 = x^3 + b^2\) be an elliptic curve over \(F_p\), and let \((x, 0)\) be a point on \(E_{p,b}\). Then

\[
x \in Q_p \iff p \equiv 1 \pmod{4}
\]

and

\[
x \notin Q_p \iff p \equiv 3 \pmod{4}.
\]

Proof: Let \((x, 0)\) be a point on \(E_{p,b}\) and let \(x \in Q_p\). Then \(x^3 \equiv b^2 \pmod{p}\) since \(0 \equiv x^3 + b^2 \pmod{4}\), and \(x^3 \equiv x^2 \pmod{Q_p}\). Note that \(-b^2 \notin Q_p\) if and only if \(-1 \notin Q_p\), and hence \(p \equiv 1 \pmod{4}\).

Conversely, let \(p \equiv 1 \pmod{4}\), and let \((x, 0)\) be a point on \(E_{p,b}\). Then \(x^3 \equiv -b^2 \pmod{4}\). Since \(-1 \notin Q_p\) and \(b^2 \in Q_p\), we have \(x^3 \in Q_p\) and hence \(x \in Q_p\).

The second assertion can be proved in the same way that the first assertion was proved.

Theorem 2.7: Let \(E_{p,b} : y^2 = x^3 + b^2\) be an elliptic curve over \(F_p\), and let \((x, 0)\) be a point on \(E_{p,b}\).

1) If \(p \equiv 1 \pmod{4}\), then

\[
\sum_{(x,0)} E_{p,b} = \frac{p(p - 1)(p + 1)}{24}
\]

2) If \(p \equiv 3 \pmod{4}\), then

\[
\sum_{(x,0)} E_{p,b} = \frac{p(p - 1)(11 - p)}{24}.
\]

Proof: 1) Let \(p \equiv 1 \pmod{4}\). Then we proved in Theorem 2.6 that there exists only one point \(x \in Q_p\) such that \((x, 0)\) is a point on \(E_{p,b}\). We know that there are \(\frac{p^2 - 1}{2}\) elements in \(Q_p\). Therefore there are \(\frac{p^2 - 1}{2}\) points \((x, 0)\) on \(E_{p,b}\). Consequently the sum of \(x\)-coordinates of all points \((x, 0)\) on \(E_{p,b}\) is equal to the sum of all elements in \(Q_p\), that is

\[
\sum_{(x,0)} E_{p,b} = \sum_{t \in Q_p} t.
\]

Let \(U_p = \{1, 2, \ldots, p - 1\}\) be the set of units in \(F_p\). Then taking squares of elements in \(U_p\), we would obtain

\[
Q_p = \{1, 4, 9, \ldots, \left(\frac{p - 1}{2}\right)^2\}.
\]

Then the sum of all elements in \(Q_p\) is

\[
1 + 4 + 9 + \ldots + \frac{p^2 - 2p + 1}{4} = \frac{p(p - 1)(p + 1)}{24}.
\]

International Scholarly and Scientific Research & Innovation 1(1) 2007 99

ISNI:00000000091950263
(8) and (9) yield that
\[
\sum_{(x,0)} E_{p,b} = \sum_{t \in Q_p} t = \frac{p(p-1)(p+1)}{24}.
\]

2) Let \(p \equiv 3 (mod 4) \). Then there exits a point \(x \notin Q_p \) such that \((x,0)\) is a point on \(E_{p,b} \). We know that there are \(\frac{p-1}{2} \) elements in \(U_p - Q_p \). Therefore there are \(\frac{p-1}{2} \) points \((x,0)\) on \(E_{p,b} \). Consequently the sum of \(x\)-coordinates of all points \((x,0)\) on \(E_{p,b} \) is equal to the sum of all elements in \(U_p - Q_p \), that is
\[
\sum_{(x,0)} E_{p,b} = \sum_{t \in U_p - Q_p} t.
\]

(10)
We proved as above that the sum of all elements in \(Q_p \) is
\[
\frac{p(p-1)(p+1)}{24}.
\]

Therefore the sum of all elements in \(U_p - Q_p \) is
\[
\frac{p(p-1)}{2} - \frac{p(p-1)(p+1)}{24} = \frac{p(p-1)(11-p)}{24}.
\]

(11)
Applying (10) and (11) we conclude that
\[
\sum_{(x,0)} E_{p,b} = \sum_{t \in Q_p} t = \frac{p(p-1)(11-p)}{24}.
\]

Theorem 2.8: Let \(b \in Q_p \) be a fixed number. Then the order of \(E_{p,b} \) over \(F_p \) is
\[
#E_{p,b}(F_p) = \frac{p-3}{2}
\]
for \(x \in Q_p \).

Proof: Let \(b \in Q_p \) be fixed and let \(x \in Q_p \). Recall that the order of an elliptic curve \(E \) over a finite field \(F_p \) is given in (1) as
\[
#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)
\]

(12)
\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right)
\]

\[
= \frac{p-1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right).
\]

(13)
Note that the set of \(b^2 x^3 \)s and the set of \(x^3 \)s are same when \(p \equiv 2(\text{mod} 3) \), that is,
\[
\sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right) = \sum_{x \in Q_p} \left(\frac{b^2 x^3 + b^2}{F_p}\right).
\]

Therefore we can rewrite (12) as
\[
#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)
\]

(14)
\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right)
\]

\[
= \frac{p-1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right).
\]

(15)
The last sum over \(x \in Q_p \) can be rearranged as
\[
\sum_{x \in Q_p} \left(\frac{b^2 x^3 + b^2}{F_p}\right) = \sum_{x \in Q_p} \left(\frac{b^2 (x^3 + 1)}{F_p}\right)
\]

(16)
Therefore we can rewrite (13) as
\[
#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)
\]

(17)
\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right)
\]

\[
= \frac{p-1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right).
\]

(18)
Note that \(b^2 \in Q_p \) that is, \(\left(\frac{b^2}{F_p}\right) = 1 \). Therefore (14) becomes
\[
#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)
\]

(19)
\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right)
\]

\[
= \frac{p-1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right).
\]

(20)
Note that \(x \) takes \(\frac{p-1}{2} \) values between 1 and \(p-1 \) since \(x \in Q_p \). So we can rewrite (15) as
\[
#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p}\right)\right)
\]

(21)
\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right)
\]

\[
= \frac{p-1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p}\right).
\]

(22)
We know that all elements of \(F_p \) are cubic residues by Theorem 2.1. Consequently the set of consisting of the values of \(x^3 \) is the same with the set of values of \(x \). So we can rewrite (17) as

\[
\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)
\]

(18)

Hence we have two cases:

Case 1: Let \(p \equiv 1 \mod 4 \). Then by the Chinese remainder theorem we get \(p \equiv 5 \mod 12 \). So \((-1)^{\frac{p-1}{4}} = 1 \). Therefore

\[
\eta_p = \frac{p - 5}{4}
\]

(20)

by (19). Further \(-1 \notin Q_p \) since \(p \equiv 5 \mod 12 \). So there are \(p - 1 \) values of \(x \) between 1 and \(p - 2 \) lying in \(Q_p \). Further \(\frac{p-5}{4} \) values of \(x + 1 \) are also in \(Q_p \) by (20). Consequently there are \(\frac{p-1}{4} \) times +1 and \(\frac{p-3}{4} \) times -1. So

\[
\frac{p-5}{4} = \frac{p-1}{4} - 1.
\]

Therefore

\[
\sum_{1 \leq x \leq p-2} \left(\frac{x + 1}{F_p} \right) = -1.
\]

So (18) becomes

\[
\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)
\]

\[
= \sum_{x \in Q_p} 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right)
\]

\[
= \frac{p - 1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right)
\]

\[
= \frac{p - 1}{2} + \sum_{x \in Q_p} \left(b^2(x^3 + 1) \right)
\]

\[
= \frac{p - 1}{2} + \sum_{x \in Q_p} \left(\frac{x^3 + 1}{F_p} \right)
\]

\[
= \frac{p - 1}{2} + \sum_{x \leq p-1} \left(\frac{x^3 + 1}{F_p} \right)
\]

\[
= \frac{p - 1}{2} + \sum_{x \leq p-2} \left(\frac{x + 1}{F_p} \right).
\]

Case 2: Let \(p \equiv 3 \mod 4 \). Then by the Chinese remainder theorem we get \(p \equiv 11 \mod 12 \). So \((-1)^{\frac{p-1}{4}} = 1 \). Therefore

\[
\eta_p = \frac{p - 3}{4}
\]

(21)

by (19). Further \(-1 \notin Q_p \) since \(p \equiv 11 \mod 12 \). So there are \(p - 1 \) values of \(x \) between 1 and \(p - 2 \) lying in \(Q_p \). Further \(\frac{p-3}{4} \) values of \(x + 1 \) are also in \(Q_p \). Hence

\[
\frac{p - 1}{2} - \frac{p - 1}{2} = 0.
\]
Consequently, there are $\frac{p-3}{4}$ times $+1$ and $\frac{p-1}{2} - \frac{p-3}{4} = \frac{p+1}{4}$ times -1. So

$$\frac{p - 3}{4} - \frac{p + 1}{4} = -1.$$

Therefore

$$\sum_{1 \leq x \leq p-2} \left(\frac{x + 1}{F_p} \right) = -1.$$

So (18) becomes

$$\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)$$

$$= p - 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right)$$

$$= p - 1 + \sum_{x \in Q_p} \left(\frac{b^2(x^3 + 1)}{F_p} \right)$$

$$= p - 1 + \left(\frac{b^2}{F_p} \right) \sum_{x \in Q_p} \left(x^3 + 1 \right)$$

$$= p - 1 + \frac{1}{2} \sum_{x \in Q_p} \left(\frac{x^3 + 1}{F_p} \right)$$

$$= p - 1 + \frac{1}{2} \sum_{1 \leq x \leq p-1} \left(\frac{x^3 + 1}{F_p} \right)$$

$$= p - 1 + \frac{1}{2} \sum_{1 \leq x \leq p-2} \left(\frac{x + 1}{F_p} \right)$$

$$= p - 1 - \frac{1}{2}$$

$$= p - \frac{3}{2}.$$

Hence in two cases we have

$$\#E(F_p) = \frac{p - 3}{2}.$$

Now we can give the following theorem for $x \in U_p - Q_p$ without giving its proof since it is similar.

Theorem 2.9: Let $b \in Q_p$ be a fixed number. Then the order of $E_{p,b}$ over F_p is

$$\#E_{p,b}(F_p) = \frac{p + 3}{2}$$

for $x \in U_p - Q_p$.

Theorem 2.10: Let $p \equiv 5(\text{mod} 6)$ and let $b \in U_p - Q_p$ be a fixed number. Then the order of $E_{p,b}$ over F_p is

$$\#E_{p,b}(F_p) = \frac{p - 1}{2}$$

for $x \in Q_p$.

Proof: Note that $b \in Q_p$ if and only if $-b \in Q_p$ when $p \equiv 5(\text{mod} 12)$ and $b \in Q_p$ if and only if $-b \in U_p - Q_p$ when $p \equiv 11(\text{mod} 12)$. By (1), we get

$$\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)$$

$$= p - 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right).$$

Case 1: Let $p \equiv 1(\text{mod} 4)$. Then by the Chinese remainder theorem we get $p \equiv 5(\text{mod} 12)$. Then the order Q_p is $\frac{p-1}{2}$ which is an even number. So we have

$$\left(\frac{x^3 + b^2}{F_p} \right) = 1$$

for exactly half of the values of $x \in Q_p$, and

$$\left(\frac{x^3 + b^2}{F_p} \right) = -1$$

for exactly other half of the values of $x \in Q_p$. So

$$\sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right) = 0.$$

Therefore

$$\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)$$

$$= p - 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right)$$

$$= p - 1 + 0$$

$$= p - 1.$$

Case 2: Let $p \equiv 3(\text{mod} 4)$. Then by the Chinese reminder theorem we get $p \equiv 11(\text{mod} 12)$. Then $\frac{p-1}{2}$ is odd. It is easily seen that

$$\left(\frac{x^3 + b^2}{F_p} \right) = 0$$

for $x = -b$. Further

$$\left(\frac{x^3 + b^2}{F_p} \right) = 1$$

for exactly $\frac{p-3}{4}$ values of $x \in Q_p$, and

$$\left(\frac{x^3 + b^2}{F_p} \right) = -1$$

for exactly $\frac{p-3}{4}$ values of $x \in Q_p$. So

$$\sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right) = 0.$$

Therefore

$$\#E(F_p) = \sum_{x \in Q_p} \left(1 + \left(\frac{x^3 + b^2}{F_p} \right) \right)$$

$$= p - 1 + \sum_{x \in Q_p} \left(\frac{x^3 + b^2}{F_p} \right)$$

$$= p - 1 + 0$$

$$= p - 1.$$
REFERENCES