
Abstract— Phase-Contrast MR imaging methods are widely used 

for measurement of blood flow velocity components. Also there are 

some other tools such as CT and Ultrasound for velocity map 

detection in intravascular studies. These data are used in deriving 

flow characteristics. Some clinical applications are investigated 

which use pressure distribution in diagnosis of intravascular disorders 

such as vascular stenosis. In this paper an approach to the problem of 

measurement of intravascular pressure field by using velocity field 

obtained from flow images is proposed. The method presented in this 

paper uses an algorithm to calculate nonlinear equations of Navier-

Stokes, assuming blood as an incompressible and Newtonian fluid. 

Flow images usually suffer the lack of spatial resolution. Our 

attempt is to consider the effect of spatial resolution on the pressure 

distribution estimated from this method. In order to achieve this aim, 

velocity map of a numerical phantom is derived at six different 

spatial resolutions. To determine the effects of vascular stenoses on 

pressure distribution, a stenotic phantom geometry is considered. A 

comparison between the pressure distribution obtained from the 

phantom and the pressure resulted from the algorithm is presented. In 

this regard we also compared the effects of collocated and staggered 

computational grids on the pressure distribution resulted from this 

algorithm. 

Keywords—Flow imaging, pressure distribution estimation, 

phantom, resolution. 

I. INTRODUCTION

AGNETIC resonance Imaging (MRI) is a very versatile 

technique for cardiac diagnostics because of its special 

features. Among them, Phase-Contrast MRI can be used to 

measure the velocity components in the flow region [1]. This 

method is based on the phase difference between the 

transverse magnetization of blood and that of stationary tissue 

which are at the same location during the time of the 
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acquisition [2]. Four dimensional phase contrast technique is 

also developed in [3] that permit spatial and temporal 

coverage of an entire three dimensional volume. 

Pressure gradient is a sensitive marker for ischemia [4]. 

Also it has clinical value in vessel stenosis and restricted value 

orifice studies [5]. Simplified Bernoulli equation is commonly 

used in medicine to calculate the pressure differences at peak 

inflow over these conditions. Recently Ebbers et al [6] has 

developed a technique to integrate pressure gradients along 

specific flow streamlines computed from PC-MRI. 

It has been shown that a more general relative pressure field 

may be calculated numerically from 2D and 3D velocity data 

using fluid dynamics relations [5, 7]. Both estimated pressure 

gradient at centerline and the distribution of pressure in flow 

field are obtained from velocity map. The resolution of this 

velocity map will affect the calculated pressure gradients. 

In this paper our attempt is on studying the effect of 

velocity map resolution on estimation of pressure distribution 

derived from flow images. In this regard the Pressure-Poisson 

Equation (PPE) for pressure field estimation is proposed. 

Then an algorithm to access the pressure distribution image 

from PC velocity map is presented. A three dimensional 

model which is similar to stenosis geometry is considered for 

evaluation of the algorithm. Different velocity images 

containing various spatial resolutions are derived from this 

numerical phantom. Then the pressure estimation procedure is 

applied on these velocity maps, and the resulted pressure 

distribution is calculated in two computational mesh types. 

Finally a comparison between these methods is presented. 

II. MATERIALS AND METHODS

A. Governing Equations 

The most commonly used method to obtain the pressure 

field from a velocity field is by first taking the divergence of 

the Navier-Stokes Equation. The resulted equation called 

Pressure-Poisson Equation (PPE) together with the Neumann 

boundary condition -which is the most appropriate boundary 

condition for PPE [8]- is expressed as, 

.bp2

b.n.np Boundary Condition 
(1) 
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Where p is the kinematic pressure (pressure/density), n  is 

the outward normal vector on surface enclosing fluid region 

and b  is a function of the given velocity field u  as below, 

t

u
uu.fub

2
(2) 

Here  is the kinematic viscosity and f  is the body force 

per unit mass. By substituting pb  in (2) the Navier-

Stokes equation will be obtained.  

PPE is an elliptic second order partial differential equation. 

For this elliptic equation the pressure at a given point must be 

solved simultaneously with the pressure at all other points. 

B. Discretization 

Different discretization techniques are used for numerical 

solution of Pressure-Poisson Equation. In this study we 

applied a Finite Difference method to calculate the pressure 

domain from velocity data. For deriving the velocity 

components and real pressure distribution in the numerical 

phantom, a Finite Volume technique is considered here.  

Explicit discretization of PPE for three dimensional flow 

domain at Cartesian coordinate is generally obtained from six 

point central approximation as below: 
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Where mx mp p x
 is calculated from velocity data. 

Stability of this iterative method is guaranteed when it does 

not diverge. In practice we have found that the algorithm does 

converge numerically.  

Finite Volume technique is used in construction of the 

numerical phantom. The method used in this domain is the 

SIMPLE (Semi-Implicit Method for Pressure Linked 

Equation) method [9].  

C. Estimation Procedure 

The estimation of pressure distribution from flow images 

includes some steps. In this study the following procedure is 

used: 

(1) Determination of the velocity field in the image and 

detection of the boundaries. In this study, evaluation of the 

estimation methods is considered, so an amenable flow 

domain with exact pressure distribution is needed. We used a 

numerical phantom to provide these data. Different spatial 

resolutions are considered in construction of this phantom. 

(2) Construction of velocity, pressure and position data 

file. This file consists of information on position of grids 

containing data and the data on these points. Here the data file 

is provided from the numerical phantom. 

(3) Importing these data to program, determining the 

maxima and minima in data file and calculating the grid 

dimensions. The maximum and minimum of data sets are 

necessary in computational cube definition. Also they are 

necessary in calculation of actual velocity components. 

(4) Construction of computational cube. This is a three 

dimensional (two dimensional in 2D problems) spatial cube 

containing the flow domain. Minima and maxima are used to 

determine its dimension. 

(5) Construction of data matrix. Some 4D (3D in two 

dimensional and steady state problems) matrix including 

position components, velocity components, exact and 

computed pressure data and masking matrix will be defined in 

this stage. Masking matrix isolates the fluid region from 

peripheral tissues. 

(6) Discretization of the governing equation as discussed 

before. 

(7) Solving the governed system of equations. In this stage 

we used the iterative Gauss-Seidel method to estimate the 

pressure domain.  

III. EXPERIMENTS AND RESULTS

A. Mathematical Phantom 

In order to evaluate the effects of different spatial 

resolutions and its effect on computed pressure distribution, 

we have applied the procedure on a numerical phantom.  

A three dimensional internal flow containing a high 

pressure gradient and a geometry which is similar to the 

biological conditions is considered as Fig 1. This model 

contains a square conduit including a sudden contraction and 

expansion. The geometry simulates a simple 75% area 

stenosis. Diameter of d=4 mm is chosen for this phantom. 

Flow domain of 4 4 80 by step length of 2 is considered in 

this model. A steady state Newtonian incompressible flow is 

considered for this phantom. Laminar flow by Reynolds 

number 250 upstream of stenosis is considered for flow 

regime. Blood density of 1.05 g/cm3 and viscosity of 3.5 centi-

poise are employed in model. Two models by grid sizes of 0.1 

and 0.125 mm developed in this regard. Based on the results 

obtained from these two models, we derived six three 

dimensional velocity domain images by grid sizes 0.1, 0.125, 

0.2, 0.25, 0.5 and 1 mm. According to these grid sizes, the 

images by resolutions include 1, 2, 4, 5, 8 and 10 pixels per 

unit length of the geometry is obtained. Table I shows the total 

number of nodes and resolution for each of these phantoms.   

The velocity field and gold  pressure distribution of this 

phantom is provided via the Fluent (FLUENT 6, CFD 

Fig. 1:Geometry of the numerical phantom. Grey region is the 

computational cube. The bright grey presents domain of fluid region.
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software package, Fluent Inc., Lebanon, NH), which is a 

Finite Volume Flow Analysis Commercial Package. The 

velocity maps are extracted from the software and then they 

are used as input file in the main program. The velocity 

domain and pressure distribution obtained from these models 

is checked to correspond on each other. 

In order to compare the effects of these phantoms on 

resulted pressure distribution, we will consider the pressure 

variations on centreline of this phantom. 

TABLE I

INFORMATION ON GRID SIZE, RESOLUTION AND NUMBER OF DATA POINTS AT 

SIX NUMERICAL PHANTOMS.

 Ph. 1 Ph. 2 Ph. 3 Ph. 4 Ph. 5 Ph. 6 

Grid Sizes (mm) 1 0.5 0.25 0.2 0.125 0.1 

Resolution n/D 1 2 4 5 8 10 

No. of Nodes 259 1533 10393 19611 76209 146221

B. Convergency criterion 

The criterion below is considered for diagnosis of 

convergency for estimation of pressure domain: 

epppp
N
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Here m  is the iteration number, p̂  is the estimated 

pressure and N  is the total node number at domain. In this 

criterion the average pressure variation at each iteration is 

compared by the previous one. Figure 2 presents the variations 

of cr  at various iteration numbers at 5 n/D resolution velocity 

field. Similar plots resulted for all phantoms. These plots show 

a decreasing cr  with iteration number. Its magnitude extends 

to zero, but for computational aims a very small number is the 

condition to stop the iterations. At this study e 10-24 is used 

for convergency condition. 

Studying the convergency of different resolution 

phantoms, shows an increase in iteration number of 

convergency with increasing the resolution. Figure 3 shows 

the iteration number of convergency as a function of 

resolution. It denotes that the relation between the resolution 

of the image and the iteration number of convergency is not 

linear. Also it is obvious from this figure that the number of 

iteration for convergency at staggered grids is less than that of 

collocated computational grids. The difference between these 

plots is more at high resolution phantoms. Also we found that 

less iterations required for collocated computational grids 

algorithms. 

C. Error Analysis 

To be assured of the resulted pressure distribution, the 

estimated pressure is compared with the gold  pressure 

distribution obtained from the numerical phantoms. The 

comparison at different iteration numbers took place. The 

equation below is used for this analysis: 

N
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(5) 

Fig. 4 shows this error as a function of iteration number 

for typical resolution 5 n/D (5 data nodes per unit length). 

Here
ip̂  is the estimated pressure and 

ip  is the gold  pressure 

value at node i  of velocity domain. This figure illustrates that 

after an iteration number of approximately 5000 the pressure 

distribution converges to a certain one. After this iteration the 

rate of variations is approximately zero. Solid line in this 

figure presents the results at Collocated computational grid 

and dashed line is for Staggered one.  

Figure 5 shows the MSE as a function of iteration number 

for an image by a resolution of 5 n/D. MSE equals the mean 

of the squares of the deviations from target, i.e., 

N

i

ii pp
N

MSE
1

2)ˆ(
1

(6) 

Fig. 2 cr  (eq. 4) as a function of iteration number. In 

computational algorithm the program stops when cr  extends to e .

Fig. 3 The convergency iteration number at different velocity map 

resolutions. More iteration is needed at finer phantoms.  
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According to this figure the estimated pressure gradient 

primarily converges to exact one and then extends to a certain 

distribution as the iteration number increases. The amount of 

error at this point is constant by variation of iterations. 

Detection of the iteration number for minimum MSE can lead 

the computations to the closest distribution to the exact one. 

As will be discussed later, the error for staggered 

computational grids is less than the collocated grids. The MSE 

at figure 5 is defined on all nodes of the domain, for 

correctness of centerline pressure gradient, it must be defined 

a MSE on centerline nodes. 

D. Spatial resolution Effects 

By considering the MSE value of convergency for all of 

these phantoms, we found that at low resolution velocity 

maps, the MSE decrease with increasing the resolution, but 

after a certain resolution it becomes almost unchanged. Figure 

6 shows the MSE value of convergency at different resolution 

images for Collocated (solid line) and Staggered (dashed line) 

computational grids. These results show that the MSE is 

approximately constant at resolutions higher than 3 n/D. 

For qualitative and quantitative comparison of resolution 

effects, the study of pressure distribution at centerline will be 

sufficient. Fig 7 illustrates the pressure distribution in 

Collocated and staggered computational grids in resolutions of 

1, 5 and 10 n/D. The general configurations of three plots are 

close to each other. The deviation of figure 7-a from gold  

pressure is due to the large grid size of this phantom. 

Especially this error is affected from the step region where the 

number of grids reduces to 1/4 initial value. Here it must be 

mentioned that the exact value of pressure in this figure is not 

so important and it is the pressure gradient that must be 

considered. In deriving the pressure field, its value varies by 

iteration. We fixed the pressure values at a certain position in 

each of these figures. This point is on outlet of the channel.  

Reviewing Fig 7 implies the importance of finer grids 

resolution during image acquisition. Also it is obvious that 

during pressure distribution estimation in small vessels the 

PPE algorithm only will detect the rough estimation of 

pressure gradients. Taking more grids during image 

acquisition results in a more precise pressure distribution 

estimation. Figure 8 shows MSE calculated from pressure 

gradient on centreline is obtained from these data. 

E. Computational grid Effects 

Comparison of two Collocated (solid curve) and staggered 

grids (dashed curve) in figure 4 and 5 illustrates that using 

staggered technique results in more closer estimation of the 

real pressure distribution. On the other hand according to 

figure 3 more iteration is required for staggered grids 

convergency. So it is preferred to use a staggered 

computational grid when there is no timing considerations.  

Fig. 6 The Mean-Squared Error (MSE) of pressure distribution at 

images with various resolutions. At resolutions more than 3 n/D a 

nearly constant MSE is derived. 

Fig. 5 Mean-Squared Error (MSE) of pressure distribution on 

whole data elements as a function of iteration number (phantom 10 

n/D). This plot shows that MSE remains constant without any 

change, when the algorithm converges. 

Fig. 4 Error of the resulted pressure distribution on whole data as a 

function of iteration number. These data is obtained from resolution 5

n/D.
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(a) 

(b) 

(c) 

Fig. 7 Comparison of Collocated and staggered mesh Results on 

centerline of the phantom at resolutions (a) 1 n/D, (b) 5 n/D and (c) 

10 n/D. The results compared for Collocated (dashed line) and 

staggered (dashed-dotted) computational grid types. 

Figure 5 shows an approximately 6 fold error on 

computational grids type of collocated relative to that of 

staggered grids. So using the staggered computational grids 

may excessively decrease the errors. 

Comparison of these computational techniques on 

different resolution images shows lower error for Collocated 

technique at resolution below 2 n/D (figure 6). So it is offered 

using the Collocated technique for very low resolutions 

images. According to figure 4, Staggered grids is 

recommended for moderate and high resolution velocity 

images.  

IV. CONCLUSION

Computation of pressure distribution estimated by 

numerical solution of Navier-Stokes equation using velocity 

map for different spatial velocity resolution is considered 

here. Our attempt was to know the efficiency of this method in 

estimation of the pressure distribution in different resolutions 

in vascular imaging. In this regard two computational grids 

considered to calculate the pressure distribution. Results show 

an approximately constant error for resolutions higher than 3 

n/D. Figure 3 shows that the iteration number of convergency 

versus the resolution of images is of higher order than one, 

and is more for staggered computational grids than the 

collocated one. According to figures 6 and 8, the convergency 

for whole pressure distribution is similar to pressure gradient 

estimated at centerline. Also it is recommended using a 

Collocated computational grid for very low resolution velocity 

images and applying the Staggered one for medium and high 

resolutions. 
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