
Specifying a Timestamp-based Protocol For
Multi-step Transactions Using LTL

Rafat Alshorman, Walter Hussak

Abstract—Most of the concurrent transactional protocols consider
serializability as a correctness criterion of the transactions execution.
Usually, the proof of the serializability relies on mathematical proofs
for a fixed finite number of transactions. In this paper, we introduce
a protocol to deal with an infinite number of transactions which are
iterated infinitely often. We specify serializability of the transactions
and the protocol using a specification language based on temporal
logics. It is worthwhile using temporal logics such as LTL (Linear-
time Temporal Logic) to specify transactions, to gain full automatic
verification by using model checkers.

Keywords—Multi-step transactions, LTL specifications, Model
Checking.

I. INTRODUCTION

RECENT advances in the development of portable devices
and wireless communication networks have led to the

emergence of mobile computing. In mobile computing envi-
ronments, users have the opportunity to access information and
services regardless of their location or movement behaviour.
This means that a large community of concurrent users can
submit their transactions to the database to be executed [15].
Examples of these applications are mobile auctions, stock
trading and electronic commerce applications. In stock trading,
submitting buy or sell transactions on the Internet has existed
for some time. In electronic commerce applications, customers
carrying portable devices (cell phones, laptops, PDAs) may
purchase flight tickets from any airlines with their credit cards.
These applications involve dealing with a huge numbers of
transactions accessing databases whose consistency must be
preserved in spite of updates. The component in the database
system responsible for scheduling the operations of concurrent
transactions to achieve consistency is the concurrency control
system (or the scheduler). The scheduler orders operations
belonging to different transactions by means of a concurrency
control protocol [10].

The number of transactions, in most concurrency control
protocols of traditional database systems, that are allowed to
be executed concurrently is finite or bounded. However, in
recent database systems, especially in mobile environments,
the number of possible concurrent transactions is unbounded.
Therefore, the schedules produced are infinite. In order to
prove correctness of such systems, a verification technique
that works with this view of infinite schedules is needed. Most
verification techniques of such concurrency control protocols
are based on finite state representations of system behaviours.

R. Alshorman is with the Department of computer science, Zarqa Private
University, Zarqa, Jordan, e-mail: rafat sh@zpu.edu.jo..

W. Hussak is with the Department of computer science, Loughborough
University, Loughborough, LE11 3TU, UK, e-mail: W.Hussak@lboro.ac.uk.

Manuscript received July 20, 2010; revised August 20, 2010.

These techniques cannot be directly applied to those systems
of concurrent transactions where behaviours may refer to past
steps of the ongoing computation or where the number of
concurrent transactions is unbounded. In such cases, even
simple transactions can generate infinite state systems [11].

One of the most famous examples that refers to the im-
portance of specifying and verifying the correctness of the
protocols that are used in environments where the number of
users increase beyond known bounds is the Skype1 services
outage [4], [5]. This problem was caused by a massive restart
of users’ computers across the globe within a very short
time as they rebooted after receiving a routine set of patches
through Windows update [5]. A huge number of users came
to the system in a continuous stream to access and request the
services in terms of login transactions. The flood of attempted
Skype logins together with a lack of Skype network resources,
at that time, led to an outage in services. However, this event
revealed a previously unseen software bug within the network
resource allocation algorithm which prevented the self-healing
function from working quickly. Regrettably, as a result of this
disruption, Skype was unavailable to the majority of its users
for approximately two days and prevented millions of regis-
tered users from accessing and making internet telephone calls
using Skype software [4]. This demonstrates the limitation
of some of the current protocols to deal with huge numbers
of users transactions, and shows the need for specifying and
verifying the correctness of the protocols that are used in such
environments.

In general, mobile users submit transactions to servers that
contain databases and participate in the mobile environment
for execution. Since the architecture of a mobile computing
system is distributed in nature [12], transactions are decom-
posed into a set of subtransactions, each of which executes in
a different database participating in the mobile environment.
Each database in a mobile environment contains a finite set of
data items and therefore, the number of different transactions
is also finite. However, the database system continuously
reacts with other components in the environment in terms of
transactions, and so the schedule will be infinite.

This paper is organized as follows. In Section II, we shall
introduce some related and previous work. The motivation and
the methodology of specifying infinite histories of multi-step
transactions are discussed in Sections III and IV, respectively.
In Section V, we define a protocol based on timestamps that

1Skype is a VoIP (Voice over Internet Protocols) telephony company that
enables its users to make free voice calls with other Skype users and also low-
cost calls to landlines and mobiles around the world. Recently, the number
of Skype users exceeded 170 millions, about 10 millions of which are online
at the same time [5]. For more information see [3].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1716International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

aims to ensure the serializability of multi-step transactions
accessing ordered set of data items. Linear-time temporal
logic (LTL) syntax and semantics are given in Section VI.
In Section VII, the properties of LTL structure for read and
write operations and their interpretations on LTL paths are
depicted. The LTL specifications of serializability condition
and the protocol are given Section VIII, and the conclusions
are drawn in Section IX.

II. RELATED WORK

In [1], a scenario of multi-step transactions has been in-
troduced to access an ordered set of data items D. Each
transaction accessed a subset of data items of a set of m data
items D and each such subset accessed data items in the same
order as they occurred in D. They proved the serializability
condition, see Theorem 12, that represented the correctness
criterion to decide whether an infinite history, composed of
such transactions, is serializable by checking only all possible
pairs of transactions. This results in temporal logic formulae
of reduced size and scale to large number of transactions. This
makes testing for serializability efficient and easy to encode
into the widely used temporal logics CTL and LTL. In this
paper, we shall define a protocol, based on timestamps, as
a concurrency control criterion suitable for such transactions.
We shall use LTL to encode the specifications for the protocol
and the serializability condition. We shall introduce a method
to prove that the histories produced by the timestamp-based
protocol are serializable and then, we can use model checkers,
such as NuSMV, to perform full automatic verifications.

III. MOTIVATION

This paper focuses on specifying and verifying infinite
histories of multi-step transactions accessing a finite set of
data items with different properties, using temporal logic and
model checker. Much work has been done in modelling mobile
environments in order to determine performance. The aim here
is to model mobile environments in order to determine cor-
rectness. In mobile computing environments infinite histories
are produced, by the newer technologies of web and mobile
transactions, in which transactions are continuously accessing
the data items of the databases. The main desired property
that needs to be specified and verified is serializability. We
model a protocol that produces infinite histories in order to
be able to use the NuSMV model checker based on the
temporal logic LTL specifications to prove or disprove that
the models satisfy this property. We define a protocol, based
on timestamps, to apply the technique to, and verify its
correctness for serializability.

IV. METHODOLOGY

In this section, we discuss some important methodologi-
cal assumptions which will be used throughout the paper.
The objective of this paper is to specify the correctness of
transactions executing concurrently on a database in terms of
serializability using specifications written in LTL. The reason
for using temporal logics such as LTL, is that the method
can be extended in order to verify infinite schedules as occur

in mobile environments where transactions are incoming and
outgoing in a continuous stream. The importance of temporal
logic in computer science is clear, especially in the speci-
fication and verification of critical reactive systems. Model
checkers, such as NuSMV, of many variants of temporal logic
have been developed to the extent that they can deal with a
huge number of states and verify real-world systems [16].

LTL is a temporal logic where the model of time is a
path in which the future is determined. LTL is used for
specifying general reactive and concurrent systems [13], [14].
It is worthwhile using LTL to specify multi-step transactions
to gain full automatic verification by using model checkers.

We shall model the protocol which is used to ensure
the serializability of concurrent transactions as finite state
transition systems for which the specifications are expressed
in LTL. Then, by exploring the state space of the state
transition system, it is possible to check automatically if
the protocol satisfies its desired specifications or not. The
multi-step transactions model is characterized by a set of
properties which ensure that any model for the protocol,
produced by a model checker, should meet the defined model
properties of multi-step transactions. The desired properties,
that the system should satisfy, are expressed in LTL. Finally, a
model checker will produce true if specification of the desired
property satisfies all possible system behaviours. Otherwise, a
counterexample will be produced to show the source of the
error.

V. A TIMESTAMP-BASED PROTOCOL FOR MULTI-STEP
TRANSACTIONS

Assume that we have an ordered set of data items Di, where
Di ⊆ D, accessed by transaction Ti ∈ T = {Tj : j ∈ N1}
such that Di = {xl, xl+1, . . . , xp}, see Section II of [1]. At
any point in time, let F (Ti) equal the first data item in Di that
is still to be accessed (the value of F (Ti) will keep changing
during the execution time). For any transaction Ti and data
item xa, we shall denote by TS(Ti, xa) the timestamp when
Ti accesses the data item xa (for the read operation). We
assume that every timestamp value is unique and accurately
represents an instant in time. No two timestamps can be the
same. A higher-valued timestamp occurs later in time than
a lower-valued timestamp. Initially, for all xa ∈ Di and
Ti ∈ T , TS(Ti, xa) = 0. Thereafter, when Ti accesses the data
item xa, TS(Ti, xa)=System TimeStamp. Then, the value of
TS(Ti, xa) remains unchanged until the last operation in the
transaction Ti (wi(xp)) has executed. Finally, when wi(xp) has
executed, the value of TS(Ti, xa) is reset to zero. Formally,
we define TS(Ti, xa) as follows:

TS(Ti, xa) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, xa /∈ Di;

0, when Ti has executed wi(xp);

STS when Ti accesses xa;

TS(Ti, xa), if Ti has not executed wi(xp) yet;

where STS denotes the System TimeStamp. In order to execute
read and write operations of transaction Ti on data item xa, we
shall compare TS(Ti, xa−1) with the remaining transactions
(on the same data item xa−1). If TS(Ti, xa−1) has the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1717International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

minimum positive time stamp among all transactions that have
executed xa−1 and are waiting to execute xa, then Ti can
access xa. Otherwise, the transaction should suspend until it
satisfies the condition (as we will see in the next subsection).

A. Accessing rules

1) There is no transaction has read xa and has not written
to xa iff, for all Tj ∈ T ,
(a) TS(Tj , xa) = 0 or
(b) TS(Tj , xa) �= 0 and wj(xa) has been executed.

2) Ti may access the first data item xl in Di, if xl satisfies
rule 1.

3) Ti may access a data item xl, 2 ≤ l ≤ p, if F (Ti) = xl.
Otherwise, the transaction Ti will be suspended.

4) F (Ti) = xl iff
(a) xl satisfies rule 1
(b) TS(Ti, xl−1) = min{TS(Tj , xl−1) : 1 ≤ j ≤

n and TS(Tj , xl−1) > 0 and TS(Tj , xl) = 0}
(c) xl ∈ Di

For example, assume that we have 4 ordered sets of data items:

D1 = {x2, x3, x4}
D2 = {x1, x2}
D3 = {x2, x3, x4, x5}
D4 = {x2, x3}

accessed by their corresponding transactions T1, T2, T3 and T4

respectively, so that the transactions are as follows:

T1 = r1(x2)w1(x2)r1(x3)w1(x3)r1(x4)w1(x4)

T2 = r2(x1)w2(x1)r2(x2)w2(x2)

T3 = r3(x2)w3(x2)r3(x3)w3(x3)r3(x4)w3(x4)r3(x5)w3(x5)

T4 = r4(x2)w4(x2)r4(x3)w4(x3)

and suppose that T1 precedes T2 and T2 precedes T3 and T3

precedes T4 in arriving at scheduler S. Also, suppose that S
makes use of the above protocol to schedule the incoming
transactions. The following matrix represents the Time Stamp
Matrix (TSM) for all transactions in T versus all data items
in D:

TS(T,D) =

⎛

⎜
⎜
⎝

TS(T1, x1) TS(T1, x2) ... TS(T1, xm)
TS(T2, x1) TS(T2, x2) ... TS(T2, xm)

...
TS(Tn, x1) TS(Tn, x2) ... TS(Tn, xm)

⎞

⎟
⎟
⎠

The entry that lies in the ith row and the jth column of the
matrix (TMS) is typically referred to as TS(Ti, xj), and it
represents the value of the timestamp for transaction Ti when
it has accessed xj . The matrix entries keep changing during
the execution time. This change depends on the transactions
nature (number of consecutive data items they access) and
number of active transactions in any point in time. Initially,
TSM will be as follows

TS(T,D) =

⎛

⎜
⎜
⎜
⎝

0 0 ... 0
0 0 ... 0
...

... ...
...

0 0 ... 0

⎞

⎟
⎟
⎟
⎠

Now, assume that the schedule (history) h and TSM at some
point in time are such that

h = r1(x2)r2(x1)w2(x1), TS(T,D) =

⎛

⎜
⎜
⎜
⎝

0 1 ... 0
2 0 ... 0
...

... ...
...

0 0 ... 0

⎞

⎟
⎟
⎟
⎠

(1)
and that the transaction T3 tries to access its first data item x2.
Then, T3 can not access the data item x2 because it has been
read by T1 but not written yet, as by accessing rule 1. Thus,
we can know whether a data item xa has been accessed by any
transaction Tj ∈ T , and also which transactions, by applying
accessing rule 1. Subsequently, assume that the history h is
such that

h = r1(x2)r2(x1)w2(x1)w1(x2),

the TSM is as in (1) and transactions T2 and T3 try to access
data item x2. As x2 is the first data item in the set D3, we
apply accessing rule 2. T3 will find x2 satisfies rule 1. So, T3

can access x2. Also, T2 will find x2 satisfies accessing rule
1 and rule 4 and can be accessed by T2 itself. Consequently,
whichever one of them (T2 or T3) comes to the scheduler S
first, can access x2 immediately. Now, assume that the history
h and TSM, at any point in time, are such that:

h = r1(x2)r2(x1)w2(x1)w1(x2)r2(x2)w2(x2)r3(x2)w3(x2)

r4(x2)w4(x2)

TS(T,D) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ... 0
0 0 0 ... 0
0 4 0 ... 0
0 5 0 ... 0
...

...
... ...

...
0 0 0 ... 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and transactions T1, T3 and T4 are contending to access x3.
According to accessing rule 3, any one of them that satisfies
the conditions of accessing rule 4 can access x3 (as x3 is
not the first data item in T1, T3 and T4). Hence, all of them
satisfy conditions (a) and (c) of rule 4. But, only T1 satisfies
also condition (b) because it has the minimum timestamp of
x2. This means that T1 accessed x2 first, and it should also
access x3 first. It can be easily seen that for transaction T2,
timestamps TS(T2, x1) and TS(T2, x2) are reset to zero. This
occurs when any transaction finishes its execution on all its
data items.

VI. LINEAR TEMPORAL LOGIC SPECIFICATIONS

In this section, we present LTL as a logic that can be
used to specify and verify infinite histories composed of n
transactions each accessing contiguous subsets of m ordered
data items, and repeating infinitely often. The aggregate of all
the repetitions of the n transactions gives an infinite number
of transactions T = {Ti : i ∈ N1}. Infinite histories are
produced by executing the accessing protocol of Section V, on
an unlimited number of these kinds of transactions. The reason
for using LTL as a specification language in this context,
is that LTL formulae are interpreted over both finite and

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1718International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

infinite sequence of states [17], as we will see in the next
sections, which is useful for the histories that are produced
from executing the accessing protocol. Also, LTL is used for
specifying general reactive and concurrent systems [13], [14].
We will encode the specifications of the accessing protocol,
which is timestamp-based, and the serializability condition,
which is introduced in Theorem 12 of [1], into LTL.

A. Syntax of LTL

The alphabet of LTL consists of a set of propositions
symbols p0, p1, . . . , distinguished read/write step propositional
symbols ri(xj), wi(xj), where i ≥ 1 and j ≥ 1, booleans
¬,∨,∧,	,⊥, and temporal operators X, F, G, U. Formulae
in LTL are those generated by:

φ ::= pi | ri(xj) | wi(xj) | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ |
Fφ | Gφ | φ1Uφ2|

The symbols ⊥ and 	 will also be used to denote the truth
values false and true respectively and the abbreviations ⇒ and
⇔ will have their usual logical meaning.

B. Semantics of LTL

An interpretation for LTL, I(sa), at a given state sa ∈ S,
where S is a set of states, assigns truth values p

I(sa)
i ,

ri(xj)
I(sa) and wi(xj)

I(sa)(∈ {⊥,	}) to propositional sym-
bol pi , ri(xj) and wi(xj), respectively. A Kripke structure
M , as it is defined in [2], is a triple < S, R, I >, where S
is a set of states, R ⊆ S × S a transition relation such that,
for all s ∈ S, there exists s′ ∈ S with (s, s′) ∈ R. A path in
M is an infinite sequence of states, π = sa, sa+1, . . . , such
that, for every b ≥ a, (sb, sb+1) ∈ R. We use πa to denote the
suffix of π starting at sa. As each state in a Kripke structure is
required to have at least one successor, it follows that πa �= {}
for any state sa. The semantics of a LTL formula φ is given
by the truth relation M, sa � φ which means that φ holds at
state sa in the Kripke structure M . Similarly, if φ is a path
formula, M,π � φ means that φ holds along path π in the
Kripke structure M . The relation � is defined inductively as
follows:

M, sa � pi iff pI(sa)i = 	
M, sa � ri(xj) iff ri(xj)

I(sa) = 	
M, sa � wi(xj) iff wi(xj)

I(sa) = 	
M, sa � ¬φ iff M, sa � φ
M, sa � φ1 ∨ φ2 iff M, sa � φ1 or M, sa � φ2

M, sa � φ1 ∧ φ2 iff M, sa � φ1 and M, sa � φ2

M, sa � Xφ iff M, sa+1 � φ
M, sa � Fφ iff there exists k ≥ a such that M, sk � φ
M, sa � Gφ iff for all k ≥ a such that M, sk � φ
M, sa � φ1Uφ2 iff there exists c ≥ a, M, sc � φ2 and,
for all a ≤ b < c, M, sb � φ1

VII. PROPERTIES OF READ AND WRITE PROPOSITIONS

Assume that we have a Kripke structure M and that the fol-
lowing properties, relating to ri(xj) and wi(xj) propositions,
hold in M :

(P1) Read/write alternation
A transaction Ti cannot have read two distinct data items
(in Di) without having written to one of them, i.e. if
xj <D xj′ , <D denotes to irreflexive totally order
relation on a set D, ri(xj′) cannot be executed until
wi(xj) has been executed.
(P2) Write implies read
A transaction Ti can only have written to xj if it has
read xj , i.e. if wi(xj) executes, then ri(xj) must have
executed before.
(P3) Read/write step proposition remains true until the
next operation, belonging to the same transaction, be-
comes true
If a read/write step has taken place, the corresponding
proposition remains true until the next operation in Ti

become true, i.e. ri(xj)/wi(xj) is true, remains true until
the next step wi(xj)/ri(xj′), where xj <D xj′ , becomes
true.
(P4) At most one step occurs at each successive state
No two distinct steps can both be false in a state, and
then both true in a next state.
(P5) A transaction Ti accesses each data item x ∈ Di

exactly once for both read and write operations
For all x ∈ Di, a transaction Ti can have exactly one read
operation (ri(x)) and exactly one write operation (wi(x))
for the data item x.

The semantics of formula φ is now given by a truth relation
M, sa � φ, where M is a structure for LTL satisfying
the additional properties (P1)-(P4). Given a state sa and a
path π, there corresponds a sequence of read and write step
propositions that become true in sa, sa+1, In this way, π
yields a history of the transactions {T1, T2, . . .} produced by
the protocol and starting their execution at sa. We illustrate
this correspondence between paths and histories as follows:

↙ ↙ ↙ ↙ ↙
r1(x1) r2(x2) w1(x1) w2(x2) r3(x1)

s0 s1 s2 s3 s4 s5
• • • • • •

begin1 r1(x1) r1(x1) w1(x1) w1(x1) w1(x1)
begin2 begin2 r2(x2) r2(x2) w2(x2) w2(x2)
begin3 begin3 begin3 begin3 begin3 r3(x1)

↙ ↙ ↙ ↙ ↙ ↙
w3(x1) r1(x2) w1(x2) r3(x2) w3(x2) r2(x3)

s6 s7 s8 s9 s10 s11
• • • • • •

w1(x1) r1(x2) w1(x2) w1(x2) w1(x2) w1(x2)
w2(x2) w2(x2) w2(x2) w2(x2) w2(x2) r2(x3)
w3(x1) w3(x1) w3(x1) r3(x2) w3(x2) w3(x2)

↙ ↙ ↙ ↙ ↙ ↙
w2(x3) r1(x3) w1(x3) r3(x3) w3(x3) r2(x4)
s12 s13 s14 s15 s16 s17
• • • • • •

w1(x2) r1(x3) w1(x3) w1(x3) w1(x3) w1(x3)
w2(x3) w2(x3) w2(x3) w2(x3) w2(x3) r2(x4)
w3(x2) w3(x2) w3(x2) r3(x3) w3(x3) w3(x3)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1719International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

↙ ↙ ↙ ↙ ↙ ↙
w2(x4) end1 end2 r3(x4) w3(x4) r3(x5)
s18 s19 s20 s21 s22 s23
• • • • • •

w1(x3) end1 end1 end1 end1 end1
w2(x4) w2(x4) end2 end2 end2 end2
w3(x3) w3(x3) w3(x3) r3(x4) w3(x4) r3(x5)

↙ ↙
w3(x5) end3
s24 s25
• •

end1 end1
end2 end2
w3(x5) end3

In the depiction above, we have

D1 = {x1, x2, x3}
D2 = {x2, x3, x4}
D3 = {x1, x2, x3, x4, x5}

and the corresponding transactions as follows

T1 = r1(x1)w1(x1)r1(x2)w1(x2)r1(x3)w1(x3)

T2 = r2(x2)w2(x2)r2(x3)w2(x3)r2(x4)w2(x4)

T3 = r3(x1)w3(x1)r3(x2)w3(x2)r3(x3)w3(x3)

r3(x4)w3(x4)r3(x5)w3(x5)

The read and write propositions that are given for each
successive state represent the propositions that are true in those
states. The top of each column displays the unique proposition
that becomes true in the particular state. This represents the
read and write operations that has been scheduled by the
protocol. In order to make it easier to follow the structure
which has a large number of propositions which are false,
only the values of propositions that are true in the states of
the trace are shown. The corresponding history h is:

h = r1(x1)r2(x2)w1(x1)w2(x2)r3(x1)w3(x1)r1(x2)w1(x2)

r3(x2)w3(x2)r2(x3)w2(x3)r1(x3)w1(x3)r3(x3)w3(x3)

r2(x4)w2(x4)r3(x4)w3(x4)r3(x5)w3(x5) .

We make use of additional propositions begini and endi to
refer to the begin and the end of each transaction.

VIII. ENCODING THE ACCESSING PROTOCOL AND
SERIALIZABILITY CONDITION INTO LTL

Firstly, we encode, using temporal operators, the properties
(P1)-(P5) of the read and write propositions in the LTL
structures (as in the previous section) as σ0, σ1, σ2, σ3 and
σ4 respectively, as follows
(P1) Read/write alternation
A transaction Ti cannot have read two distinct data items (in
Di) without having written to one of them, i.e. if x <D y,
ri(y) cannot be executed until wi(x) has been executed.

σ0 =
∧

i≥1

∧

x,y∈Di,x<Dy

G[(ri(x) ⇒ F(wi(x) ∧ F(ri(y)))]

(P2) Write implies read
A transaction Ti can only have written to x if it has read x,
i.e. if wi(x) executes, then ri(x) must have executed before.

σ1 =
∧

i≥1

∧

x∈Di

G[ri(x) ⇒ F(wi(x))]

(P3) Read/write step proposition remains true until the next
operation, belonging to the same transaction, becomes true
If a read/write step has taken place, the corresponding
proposition remains true until the next operation in Ti

becomes true, i.e. if ri(x)/wi(x) is true, it remains true until
the next step wi(x)/ri(y), where x <D y, becomes true.

σ2 =
∧

i≥1

∧

x∈Di

G[wi(x) ⇒ ¬ri(x)] ∧
∧

i≥1

∧

x,y∈Di,x<Dy

G[ri(y) ⇒ ¬wi(x)]

(P4) At most one step occurs at each successive state
No two distinct steps can both be false in a state, and then
both true in a next state.

σ3 =
∧

i,i′≥1
1≤j,j′≤m

i�=i′ or j �=j′

G [¬((¬ri(xj) ∧ ¬ri′(xj′)) ∧ X(ri(xj) ∧ ri′(xj′)))

∧¬((¬ri(xj) ∧ ¬wi′(xj′)) ∧ X(ri(xi) ∧ wi′(xj′)))

∧¬((¬wi(xj) ∧ ¬wi′(xj′)) ∧ X(wi(xj) ∧ wi′(xj′)))].

(P5) A transaction Ti accesses each data item x ∈ Di

exactly once for both read and write operations
For all x ∈ Di, a transaction Ti can have exactly one read
operation (ri(x)) and exactly one write operation (wi(x)) for
the data item x, i.e we can not have Ti such that

Ti = ri(x1)wi(x1) . . . ri(x1) . . . wi(xp)

or
Ti = ri(x1)wi(x1) . . . wi(x1) . . . wi(xp)

where Di = {x1, x2, . . . , xp}. This is defined in σ5 as follows

σ4 = (
∧

i≥1

∧

x∈Di

G¬[ri(x) ∧ F(¬ri(x) ∧ Fri(x))]) ∧

(
∧

i≥1

∧

x∈Di

G¬[wi(x) ∧ F(¬wi(x) ∧ Fwi(x))])

Next, we encode the serializability condition of Theorem
12 (see [1]). This is defined in terms of σ5 and σ6:

σ5 =
∧

i,i′≥1,i�=i′

∧

x,y∈Di∩Di′ ,x<Dy

G¬[(wi(x) ∧ F(wi′(x) ∧ F(wi′(y) ∧ F(wi(y)))) ∨
(wi′(x) ∧ F(wi(x) ∧ F(wi(y) ∧ F(wi′(y)))))]

σ6 =
∧

i,i′≥1,i�=i′

∧

x∈Di∩Di′

G¬[ri(x)∧ri′(x)]

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1720International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

The serializability condition of Theorem 12 says if we choose
any two transactions (Ti and Ti′) participating in a history h
and we take the history that containing only the operations
that belonging to Ti and Ti′ (denoted by h{Ti,Ti′}), where
Di ∩Di′ = {xl, . . . , xp}. Then, h{Ti,Ti′} will be of the form

h{Ti,Ti′} = . . . ri(xl) . . . wi(xl) . . . ri′(xl) . . . wi′(xl) . . .

ri(xp) . . . wi(xp) . . . ri′(xp) . . . wi′(xp) . . .

then the the history h is serializable. In σ6, we encode that if a
transaction Ti begins executing a read operation on data item
x, no read operation on data item x by any other transactions
occurs (executes) until the write operation of Ti completes its
execution on data item x, i.e.:

. . . ri(x)︸ ︷︷ ︸
no ri′ (x)

wi(x) . . .

Therefore, if we avoid the situation above, there is no cycle
in the precedence graph G of a history h{Ti,Ti′} (denoted by
G(h{Ti,Ti′}) as in [1], [2], [10]) between Ti and any other
transaction Ti′ on the same data item; see Figure 1(a). Now,
the serializability condition, of Theorem 12, is to hold for each
x ∈ Di ∩Di′ . It is possible to make a cycle of length two in
a precedence graph G(h{Ti,Ti′}) on different data items, i.e.
if Ti precedes Ti′ in accessing data item x and Ti′ precedes
Ti in accessing data item y, or Ti′ precedes Ti in accessing
data item x and Ti precedes Ti′ in accessing data item y, see
Figure 1(b) and Figure 1(c). Therefore, we encode in σ5 that
these two situations do not occur. The formulae σ5 and σ6

together represent the encoding of the serializability condition
into LTL denoted by σ7:

σ7 = σ5 ∧ σ6

•Ti

x
�� •Ti′

x

��

(a) Cycle on the same data item

•Ti

x
�� •Ti′

y

��

(b) Cycle on different data items

•Ti

y
�� •Ti′

x

��

(c) Cycle on different data items

Fig. 1. Cycle of length two

Next, we encode the accessing protocol, which defines in
section V, in σ10 as follows:

σ8 =
∧

i,j,k≥1
i�=j,j �=k,i �=k

G[(
∧

x∈Di∩Dj∩Dk

(wi(x) ∧ F(wj(x) ∧ F(wk(x))))) ∨

(
∧

x∈Di∩Dj∩Dk

(wi(x) ∧ F(wk(x) ∧ F(wj(x))))) ∨

(
∧

x∈Di∩Dj∩Dk

(wk(x) ∧ F(wi(x) ∧ F(wj(x)))))].

In σ8, we model an unbounded number of transactions, that
may come to the scheduler S, which uses the protocol that
is defined in section V, by three transactions Ti, Tj and Tk.
Transactions Ti and Tj represent any two particular transac-
tions satisfying the accessing rules of the protocol and Tk

represents any other transaction in the schedule S. Transaction
Tk could execute any data item x ∈ Di ∩Dj ∩Dk as follows

• Case 1: Tk could execute x after Ti and Tj

. . . • . . . • . . . • . . .
wi(x) wj(x) wk(x)

• Case 2: Tk could execute x after Ti and before Tj

. . . • . . . • . . . • . . .
wi(x) wk(x) wj(x)

• Case 3: Tk could execute x before Ti and Tj

. . . • . . . • . . . • . . .
wk(x) wi(x) wj(x)

In the depiction above, we assume that Ti executes the data
item x, where x ∈ Di∩Dj , before Tj does. Therefore, we can
say that, Ti and Tj satisfy the accessing rules of the protocol
if and only if for all x ∈ Di ∩ Dj , TS(Ti, x) < TS(Tj , x)
or TS(Tj , x) < TS(Ti, x) regardless of when the transaction
Tk could access the data item x. We can illustrate this in the
LTL structure as follows:

↙ ↙ ↙ ↙
wi(xl) rj(xl) wj(xl) wi(xl+1)
sa sb

. . . • . . . • . . . • . . . •
wi(xl) wi(xl) wi(xl) wi(xl+1)

... rj(xl) wj(xl) wj(xl)
...

...
...

↙ ↙ ↙ ↙
rj(xl+1) wj(xl+1) wi(xp) rj(xp)

sc
• . . . • . . . • . . . •

wi(xl+1) wi(xl+1) wi(xp) wi(xp)
rj(xl+1) wj(xl+1) wj(xl+1) rj(xp)

...
...

...
...

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1721International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

↙
wj(xp)

. . . • . . .
wi(xp)
wj(xp)

...
where Di ∩ Dj = {xl, xl+1, . . . , xp}. We notice, from the
depiction above, that transaction Ti has executed wi(xl) and
Tj has not executed both rj(xl) and wj(xl) yet, regardless
of when/where the transaction Tk executes read and write
operations on the data item xl and similarly for xl+1 up to xp.
Transaction Tj will execute both rj(xl) and wj(xl) after Ti

does and this will keep Ti and Tj serializable. In other words,
execution of any operations belonging to other transactions
will not affect the serializability of the transactions Ti and Tj .

The access rules of the protocol (see subsection V.A) say
that if a transaction Ti has executed ri(x) but not wi(x), no
other transaction Tj can execute rj(x). This can be encoded
into LTL as follows

σ9 =
∧

i,i′≥1,i�=i′

∧

x∈Di∩Di′

G[ri(x) =⇒ ¬ri′(x)]

Therefore σ10, which represents the access protocol, is defined
as follows

σ10 = σ8 ∧ σ9.

This means that any history h produced by the access protocol
should satisfy both σ8 and σ9, if we model the read and write
operations in the history h by an LTL structure.

Now, the future in LTL is seen as a sequence of states,
so the future is a path. Therefore, if we consider the states
in the LTL path as instants of time, we can assign a truth
value to each proposition at each time instant so that the
interpretation maps to each instant of time a set of propositions
that hold at that instant. As a consequence of this, we can
assign a truth value to each read/write proposition belonging
to any active transaction, at any given time, that is scheduled
by the protocol. As we are dealing with a protocol based
on timestamps, our interpretation will, therefore, map each
timestamp to a set of propositions that hold at that timestamp.
Thus, the interpretation I is a function

I : N → 2prop

where N is a set of timestamps (natural number) and prop
is a set of all propositions. This means that we can specify
infinite histories generated by a protocol based on timestamps
using LTL specifications. Now, as σ10 represents the histories
produced (or generated) by the protocol and σ7 represents the
serializability condition then, we can prove that the histories
are serializable by proving the following formula:

σ10 =⇒ σ7.

IX. CONCLUSION

We have given an approach, using LTL, to specify and
verify a scheduler uses a protocol, based on timestamp, to
schedule an unlimited number of transactions incoming and

outgoing from a system. This approach allows for the systems
and their properties to be specified using temporal logics. The
verification part can be performed by model checkers, such
as NuSMV or Spin, to check exhaustively the state space of
the system behaviours against the specifications. If the system
does not satisfy its properties, counterexamples to pinpoint the
errors are automatically produced by the model checker.

we have assumed serializability to be the correctness cri-
terion for concurrent transactions executing in a transactions
processing system. Also, we have shown that the serializability
condition and the scheduler can be encoded into LTL. Then,
an automatic verification can be performed using a model
checker, to see whether the scheduler satisfies the serializ-
ability condition or not.

We have found that LTL is a good choice to specify a proto-
col based on timestamps because any state in LTL path could
implicitly represent a timestamp. Actually, we encoded the
behaviour of the protocol in terms of three transactions. Two
of them represent any two transactions satisfying the accessing
rules of the protocol, and the remaining one represents any
other transaction in the schedule. This means that we can prove
that the schedules, produced by the protocol, are serializable
if

σ10 =⇒ σ7

is satisfied, where σ10 represents the LTL formula that spec-
ifies the behaviour of the protocol in LTL structure, that we
have given above, and σ7 represents the LTL formula that spec-
ifies the serializability condition. This gives us an automatic
verification approach that can overcome the disadvantages of
the traditional approaches such as human error and may not
cover all possible system behaviours.

ACKNOWLEDGMENT

We would like to thank ZPU (Zarqa Private University) for
its support in making this work possible.

REFERENCES

[1] R. Alshorman and W. Hussak, A Serializability Condition for Multi-step
Transactions Accessing Ordered Data, International Journal of Computer
Science, Vol. 4, issue 1 (2009), pp. 13-20.

[2] R. Alshorman and W. Hussak, A CTL Specification of Serializability for
Transactions Accessing Uniform Data, International Journal of Computer
Science and Engineering , Vol. 3, issue 1 (2009), pp. 26-32.

[3] Skype Web site, http://www.skype.com
[4] Skype Heartbeats Archives, http://heartbeat.skype.com/2007/08/
[5] D. Rossi, M. Mellia and M. Meo, Evidences Behind Skype Outage,

In proceedings of the IEEE International Conference on Communi-
cation (ICC’09), Dresde, Germany, June 2009, Link: http://www.tlc-
networks.polito.it/mellia/papers/Skype outage icc09.pdf

[6] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, NuSMV: a new sym-
bolic model verifier, In proceedings of the 11th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science,
Springer-Verlag, Vol. 1633, 1999, pp. 495-499.

[7] NuSMV v2.4 Tutorial, http://nusmv.fbk.eu/NuSMV/tutorial/v24/tutorial.pdf,
NuSMV website.

[8] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, NuSMV: a new sym-
bolic model verifier, In proceedings of the 11th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science,
Springer-Verlag, Vol. 1633, 1999, pp. 495-499.

[9] NuSMV v2.4 Tutorial, http://nusmv.fbk.eu/NuSMV/tutorial/v24/tutorial.pdf,
NuSMV website.

[10] R. Elmasri, S. Navathe, Fundamental of Database Systems, Addison-
Wesley, Fourth Edition, 2004.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1722International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

[11] S. Gnesi, Formal Specification and Verification of Complex Systems,
Electronic Notes in Theoretical Computer Science Netherlands, Vol. 80,
2003, pp. 294-298.

[12] W-C. Peng and M-S. Chen, Mining user moving patterns for personal
data allocation in a mobile computing system, In IEEE proceedings of
29th International Conference on Parallel Processing, 2000, pp. 573580.

[13] Z. Manna and A. Pnueli, Temporal verification of reactive systems:
Safety, Springer-Verlag N.Y. Inc., 1995.

[14] K. Sen, G. Rosu and G. Agha, Generating Optimal Linear Temporal
Logic Monitors by Coinduction, In proceedings of 8th Asian Computing
Science Conference (ASIAN03), Lecture Notes in Computer Science,
Springer-Verlag, Vol. 2896, 2003, pp. 260-275.

[15] V.C.S. Lee, K-W. Lam, S.H. Son and E.Y.M. Chan, On transaction
processing with partial validation and timestamp ordering in mobile
broadcast environments, IEEE Transactions on Computers, Vol. 51, issue
10 (2002), pp. 1196-1211.

[16] R. Alshorman and W. Hussak, Multi-step transactions specification and
verification in a mobile database community, In proceedings of 3rd IEEE
International Conference on Information Technologies: from Theory to
Applications, IEEE, ICTTA 08, Damacus, Syria, IEEE Computer Society
Press, 2008, pp. 1407-12.

[17] R. Pucella, The finite and the infinite in temporal logic, ACM SIGACT
News, Vol. 36, issue 1 (2005), pp. 86-99.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:11, 2010

1723International Scholarly and Scientific Research & Innovation 4(11) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

11
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

31
7.

pd
f

