

Abstract—The paradigm of mobile agent provides a promising

technology for the development of distributed and open applications.
However, one of the main obstacles to widespread adoption of the
mobile agent paradigm seems to be security. This paper treats the
security of the mobile agent against malicious host attacks. It
describes generic mobile agent protection architecture. The proposed
approach is based on the dynamic adaptability and adopts the
reflexivity as a model of conception and implantation. In order to
protect it against behaviour analysis attempts, the suggested approach
supplies the mobile agent with a flexibility faculty allowing it to
present an unexpected behaviour. Furthermore, some classical
protective mechanisms are used to reinforce the level of security.

Keywords—Dynamic adaptability, malicious host, mobile agent

security, reflexivity.

I. INTRODUCTION
HE mobile agent is generally defined as an autonomous
software entity, having an own activity, acting by

delegation for the account of a person or an organization, can
migrate from a host to another over a network and can
communicate with other agents [14]-[11]. The mobile agent
paradigm offers some very interesting perspectives for a lot of
applications, like electronic business, Web information
research and data bases manipulations. This paradigm
provides several advantages to design and control distributed
applications (e.g., autonomy, dynamic adaptation, fault-
tolerance, heterogeneous computing, better use of the network
resources and reduction of communication with respect to
latency and connection time). However, this technology
creates serious theoretical and practical problems like the
problem of heterogeneity, the preservation of
communications, the shared resource management and
particularly the security problem that represents a crucial point
for the use of mobile agent applications.

The security of a mobile agent system covers four different
aspects [2]: the security of the agent migration, the protection
of the platform against the malicious agents, the agent's
protection against others malicious agents and the agent's

Manuscript received September 30, 2006
Salima Hacini is with Lire Laboratory, Computer Science Department,

Mentouri University of Constantine, Algeria; (phone: 00 213 31 81 88 17; fax:
00 213 31 81 88 17; e-mail: salimahacini@gmail.com).

Haoua Cheribi is with Lire Laboratory, Computer Science Department,
Mentouri University of Constantine; Algeria; (e-mail: haoua_eva@yahoo.fr).

Zizette Boufaïda is with Lire Laboratory, Computer Science Department,
Mentouri University of Constantine; Algeria; (e-mail:
boufriche@hotmail.com).

protection against a malicious platform. The problem of
platform’s protection has received a considerable attention.

Whereas, the protection of mobile agent against malevolent
hosts remains an open problem because of its complexity,
since the host has a full control on the mobile agent execution.

We will be interested in protection of a mobile agent
against malicious hosts. The suggested protection approach is
based on the dynamic adaptability. The latter is used in order
to offer the mobile agent the property of flexibility allowing
the modification of its behaviour and thus complicating its
analysis. The co-existence of several approaches for the
realization of the dynamic adaptability shows that there is no
universal solution which reconciles the efficiency and the
easiness. However, the reflexivity seems to be a promising
method for the implantation and the realization of the dynamic
adaptability. It constitutes a support of the application
development and provides mechanisms enabling to express
treatments in extremely generic terms. The intrinsic properties
of the reflexivity (introspection and intercession) give the
mobile agent the possibility to reason and to act on itself

The paper is organized as follows: Section II exposes some
related works from which we inspired our idea. The section III
explains in a concise and precise manner the notion of
adaptability and the reflexivity. At the level of the section IV,
the proposed approach is described. Finally, Section V
concludes this article.

II. RELATED WORK

A. Related Works on Mobile Agent’s Protection
In this subsection, we summarize only the techniques that

have been proposed in the literature to protect agents against
attacks perpetrated (by malicious hosts) and that will be
combined to enhance our mobile agent security.

Several attempts approach these security threats in a total or
partial way. They principally aim at making the attacks useless
or detectable. Among the existing approaches, we find:

The approach of Riordan and Schneier [13] consists of
using data found on the environment where the agent executes
to construct decryption keys. When the proper environment
information is located, the key is generated, the cipher-text is
decrypted, and the resulting plain-text it acted upon. Without
the environmentally supplied input, the agent cannot decrypt
its own message and can be made cryptographically resistant
to analysis aimed at determining the agent’s function. Until
the data has been collected, neither the agent nor the host is
able to execute or understand the agent's mission or strategy.

Dynamic Adaptability using Reflexivity for
Mobile Agent Protection
Salima Hacini, Haoua Cheribi, and Zizette Boufaïda

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3860International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

The technique allows the agent owner to specify some
constraints on the environment where the agent will execute.

The approach proposed by Wang and Guan [16] preserves
the integrity of the mobile agent by the gradual construction of
the agent's code in which new modules can be added and
those redundant can be entrenched at the runtime. This
approach increases the confidentiality of the code, reduces the
cost of transport and facilitates the agent's recuperation after
the malicious attacks.

The approach proposed by Grimley and Monroe [8] uses
the factor of the time to identify a malevolent host. If the
amount of time needed to execute a mobile agent on a host is
limited, then the chance that it would tamper with is
minimized. Once the maximum amount of time needed by a
mobile agent to execute safely on an untrusted host is elapsed,
the agent must shut down or move to the next host specified
on its itinerary.

B. Related Works on Mobile Agent Dynamic Adaptability
This subsection presents some dynamic adaptability related

works: they use
Ledoux and Bouraqadi-Saâdani [10] have proposed an

approach permitting the adaptation during execution of the
mobile agent in order to guarantee a better QoS (Quality of
Service). They have used the reflection to support this
adaptation. In order to increase the performances of the
system, they have proposed the introspection of the
environment characteristics to choose dynamically the best
execution policy of the resource reallocation and the
relationships configuration.

Amara-Hachmi and El Fallah [1] have proposed a model of
architecture based components for a mobile agent to increase
the modularity, the extensibility, and self-adaptability. The
context of the mobile agent changes when it moves from a
host to another. The result of the dynamic adaptation is the
selection of the adequate components for the new context and
their relationships.

Eyal de Lara et al [7] have elaborated Puppeteer: a
component-based adaptation system for extending component
based applications to support adaptation in mobile
environments. It could support adaptation without modifying
the applications. Puppeteer performs data and control
adaptations by repeatedly using the policies of subsetting and
versioning. A subsetting policy renders parts of the original
document like text, or the first-slide of a document. A
versioning policy allows the choices among multiple
instantiations of a component, such as instances of an image
with different resolution.

In order to protect the mobile agent against the host that
receives and executes it, our approach exploits opportunities
offered by the dynamic adaptability mechanism. The latter is
used to offer the mobile agent the possibility to modify its
behaviour. This ability makes it unpredictable and complicates
its analysis. The idea is that the mobile agent must verify the
customer trustworthiness and present to him, according to the
trust he inspires, an appropriate behaviour.

III. USED CONCEPTS

A. Adaptability
The adaptation designates the action to react facing

variations of environment constraints. The Adaptability refers
to the capacity or the degree of adaptation [12].

The adaptation can be static or dynamic: The static
adaptability is done before the execution according to
environment knowledge detained. At the level of the dynamic
adaptability, two cases can be presented:

- Adaptation specified statically and done dynamically:
This solution consists of estimating, during the
construction of the application, the different
variations of the environment and defining actions of
adaptation. Consequently, it defines adaptability
rules.

- Adaptation specified and done dynamically: This
approach enables the adaptation during the execution
as well as the definition and the dynamic setting up
of the used strategy. Currently, we are not informed
of a serious implementation of this idea, it is only
considered.

We essentially distinguish two strategies for the realization
of the adaptation [12]-[5]:

- Implicit Strategy: It concerns the application that
uses a protocol which encapsulates a solution to the
adaptation for a given problem, without having the
control right or replacement. (e.g., facilities proposed
by CORBA, JAVA - RMI…). The adaptability
proposed in these cases has a limited domain of
validity.

- Explicit Strategy: It concerns the applications that
can control the definition and/or the choice of
activities. This strategy can be provided by the
application, either by procedural, declarative or a
reflexive manner. This intermediate solution has
benefit of a large popularity. The visibility that it
offers can be placed between the transparency of the
declarative approach and the total visibility of the
procedural approach.

B. Reflexivity
The reflexivity is a manner of internal organization of a

system to facilitate its development, its adaptation and its
reuse, by offering a conceptual setting allowing program
functionalities separation. In fact, the reflexivity is the
capacity for a program to manipulate as data something
representing the state of this program during its execution. It
is the possibility to reason and to act on oneself [15]-[6].

This method considers two abstractions levels
- The base level: designates the standard application and

manipulates domain entities. It describes the application
functionality.

- The meta-level: is the level that reasons and acts on the
base level. It manipulates abstractions of its entities. It
describes the non functional aspect of the application.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3861International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

Two types of reflexivity can be distinguished: the structural
reflexivity and the behavioural reflexivity. The first one
concerns the most static aspects (like graphs of inheritance, of
composition or types of data). Whereas the second one,
concerns the more dynamic aspects, related to the state and the
execution strategy. A system of this type can propose two
alternatives implementations of a same module [6].

IV. THE PROPOSED APPROACH

A. Problem Position
Security is a very large and delicate problem and ensuring it

at 100% is an impossible task. However, it is always possible
to ensure an acceptable level of security by applying a well
studied protection strategy. The aim of this paper is the
protection of the mobile agent against the malicious hosts'
attacks. These attacks are numerous and of various types.
They include the passive attacks as well as the active attacks
which modify the data, the code, the state or messages emitted
by the mobile agent [3]. Furthermore, security requests are
multiple. They relate to the Authentication, the
Confidentiality, the Integrity and the Availability. Moreover,
security measures are of various levels. They consist of
structural measures, prevention measures, palliative measures,
protection measures, detection measures and recovery
measures. The proposed mobile agent protection approach
uses prevention measures supported by dynamic adaptation
technique. It mainly protects the mobile agent against
behaviour analysis. In order to get a satisfying level of
security, classical security mechanisms, like symmetric and
asymmetric cryptography and digital signature, are used.

The eavesdropping attack involves the interception of
confidential communications. Its threat is exacerbated in
mobile agent systems because the host has a full control on the
execution of the mobile agent. If the malicious host cannot
directly reach the mobile agent confidential data or code, it
will try to analyze the agent behaviour to be able to deduce its
strategy [4]. Consequently, the mobile agent security implies
protecting its information and code against their unauthorized
disclosure.

B. The Adopted Strategy
Our approach consists of the protection of the mobile agent

via a dynamic adaptation policy. During its life cycle, the
mobile agent presents different and unexpected behaviours. In
order to allow a modification of its behaviour, an aptitude of
flexibility is affected to the mobile agent. This ability prevents
the visited host to deduce the followed strategy. Thus, any
behaviour analysis attempt becomes difficult and inefficient.

In fact, the change of the behaviour must be carried out by
taking account of the environment variations represented by
the collected data. These latter could be related to the host
security detected level, the requested service, the service
requirements or circumstances. Their analysis generates the
selection of a suitable beforehand defined behaviour. This
adaptation is statically conceived and dynamically performed.

An interface allows communication with the host and permits
data acquisition. These data are used for the mobile agent
treatment selection. Collected data are stored in a memory and
the modules of the various selected treatments are in a library.

C. Mobile Agent Structure
The considered mobile agent reflexive structure should

support the previously described strategy and offer a better
efficiency of the adaptive treatment. So, a behavioural
reflexivity is suggested. It highlights two conceptual levels:
(i) a basic level which contains the functional code and
formulates the application logical implementation as well as
its semantics. It comprises three components: the Interface,
the Memory and the Library (ii) a meta-level which contains
the non-functional code presents a variety of services that
belong to the application and describes the adaptation process
(see Fig. 1). The latter is ensured by an adaptor component.

Fig. 1 Adaptive mobile agent reflexive structure

The proposed mobile agent reflexive architecture is

presented by Fig. 1. The environment corresponds to the
visited host. The refinement of this architecture is illustrated
by Fig. 2. The mobile agent protective structure contains:

Fig. 2 Mobile agent protective structure

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3862International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

 Interface: this component allows the mobile agent-
environment communication. It comprises two sub-
components; a Sensor and an Actuator:

- The Sensor: it is responsible for the
environment perception and the data
acquisition. Three types of acquisition can
be considered: the observation, the
inspection and the interaction. The type of
acquisition is related to required data:
identity, certificate, private data (e.g.,
password, reference contract…),
infrastructure…

- The actuator: it allows the execution of the
sequence of selected actions. These actions,
can be a simple alarm, a treatment
modification, a stop of the execution or/and
a migration.

 The memory: it contains the data collected by the
sensor and that represent environment data as well as
the data provided by the mobile agent owner named
origin data. They will be used to check the validity
of collected data.

 The library: it contains the modules that compose the
mobile agent code (micro-components) and from
which various compositions generate the different
behaviours. The purpose is to offer more
confidentiality and more flexibility to the treatment.
In order to vary the mobile agent behaviour,
alternatives for some modules are proposed.
Furthermore, some fictive modules are used to
complicate the analysis task and to increase the
security level. Various combinations of the micro-
components are supplied by a set of abstract
expressions used to implement the mobile agent
behaviours.
Let E= {E1, E2...En} be a set of abstract expressions
and let A= {A1, A2...Ap} be a set of adaptive micro-
components. Each expression Ei (i<=n) is a sequence
of calls of subset of adaptive micro-components Aj
and can be viewed as a sequence of bits (each bit
indicates a specific micro-component) [9]. The set A
can be subdivided on two subsets:
Let F= {A1, A2…Aq} be a set of functional modules
that corresponds to the application and let S=
{Aq+1,…,Ap} be a set of security modules (e.g.,
cryptography, hashing, digital signature,….).

 The adaptor: it determines the adaptive treatment. It
comprises a controller, an analyzer, a deliberator and
a base of adaptation rules.

- The analyzer: it analyzes the data stored in
the memory component and uses the base of
adaptation rules to determine the appropriate
behaviour.

- The deliberator: it determines the actions to

be performed by selecting the micro-
components specified by the selected
abstract expression and which are stored
into the library.

- The controller: it begins the work and
ensures the coordination and the
synchronization of the mobile agent
components.

- The adaptation rules base: it comprises the
rules of the type: <If Condition Then
Action>. It constitutes the core of our
architecture. Rules are generic and
independent from any application (see Table
I).

TABLE I

EXAMPLES OF ADAPTATION RULES
RULE CONDITION ACTION

1 Failure of Key generation Notify and Leave
2 Trust degree belongs to [a1,b1] Assure a complete service
3 Trust degree belongs to [a2,b2] Assure a degraded service
4 Trust degree belongs to [a3,b3] Notify and Leave
5 Lack of facultative Resource Assure a degraded service
6 Lack of critical Resource Notify and Leave
7 Time of execution expired Stop, Notify and Leave
8 Already visited Path Choose another alternative
9 Blockage or Failure Execution See exceptions
10 Failure Exception Stop, Notify and Leave

D. Scenario of Execution
The mobile agent transports its itinerary from which it

selects, in a random way, the next customer to visit. The
customers’ data are moved with the agent in an encrypted
form. They are encrypted using the public key of the host of
origin.

While arriving on the visited host, the agent must
authenticate all data useful to the achievement of a requested
service (e.g., contract reference, password…). Thus, the agent
must obtain information from the host environment via the
sensor. The analyzer crypts the collected data using the host of
origin public key and compare them to the origin data in order
to calculate the trust degree. The latter enables to specify the
behaviour to be carried.

In order to reduce our mobile agent size, the origin data are
removed and replaced by collected data. The new values will
be used as a proof when the mobile agent returns to the host of
origin.

The mobile agent behaviour depends on the release of rules
belonging to the base of adaptation rules. The checked
conditions are contained in the left parts of the rules, while the
right parts correspond to the different behaviours expressed by
the abstract expressions. The treatments vary from a service to
another and are related to the degree of degradation of the
service and to the provided alternatives.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3863International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

TABLE II
EXAMPLE OF ESTIMATION INTERVALS WITH THEIR RELATED FEEDBACK

Interval of trust
estimation Feedback

0-20 Stopping service
21-60 Reducing service

61-100 Performing service

There are three trust estimation intervals. They respectively

correspond to three ranges of trust value and generate
different behaviours (see Table II). If the trust degree value
belongs to a good interval (see rule n°2 in Table I), the agent
starts the environmental key generation. The latter is used to
decrypt the abstract expression related to the specified
behaviour. When the agent cannot generate the appropriate
environmental key because of missing or erroneous
information, it stops its execution and leaves the host after
having noted the cause of the failure [9]. In the case of the
success of the generation of the environmental key, the
analyzer decrypts the abstract expression and transmits it to
the controller which sends it to the deliberator. The latter has
to call the suitable modules which are in the library and
provides the result to the controller which transmits them to
the actuator with an execution order. The actuator executes
deliberated actions and delivers a report of the execution to
the controller so that it can pass at the following step.

With an aim of increasing the flexibility of the system, a set
of exceptions is defined. If any problem occurs during one of
the execution steps, the controller notes the non-progression
for a determined duration. It then asks the analyzer to check
the set of the exceptions for a possible re-establishment. If the
whole of the exceptions does not correspond to the problem
mentioned, it stops the execution immediately, notifies the
problem and leaves the current host to migrate towards
another host of the itinerary or to be allocated to the host of
origin.

E. Trust Estimation and Environmental Key Generation
The trust degree estimation of the visited host is calculated

using the collection of the values of certain parameters starting
from the environment. The trust degree T is calculated
according to importance IJ, weight WJ of the parameter J and
factor SJ which is equal to 1 in the case of success (conformity
of information), and equal to 0 in the case of a failure (non-
conformity of information). The trust degree estimation is
performed according to the following formula [9].

1
T I s

k

j j j
j

w
=

=∑

Each parameter J has predefined values of its importance

and its weight. These values are stored into the mobile agent
memory.

For confidentiality reasons, the abstract expressions
corresponding to the treatments to be carried out are
encrypted, by the host of origin, using a symmetrical key. For

the same reasons, this key should not be transferred through
the network. It will be generated by the agent while arriving
on the host of execution. The generation of this environmental
key depends on a set of parameters values collected from the
environment.

The generation of the environmental key follows the
subsequent steps [9]:

1) Collect parameters values; let {d1, d2…, dK} be the set
of collected data.

2) Concatenate the collected data. Let C = (d1.d2… dK) be
the result of the concatenation.

3) Apply an SHS (Secure Hash Standard) one way
function to C. Let be S = H(C)

4) Apply S ⊕ id (where id is a unique mobile agent
identifier) to generate an environmental key Ks witch
will be serve to decrypt the selected abstract expression.

V. CONCLUSION
A malicious host can deduce mobile agent confidential data

and understand its execution strategy by analyzing its
behaviour.

To prevent this type of attacks, the proposed approach uses
the dynamic adaptation techniques. These techniques allow
the adaptation and the modification of mobile agent behaviour
during its life cycle by taking account of the environment
variations of the visited host. Thus, the mobile agent is
characterized by an unexpected behaviour. This ability
prevents the visited host to deduce the followed strategy.
Thus, any behaviour analysis attempt becomes difficult and
inefficient.

Furthermore, the use of the classical protection techniques,
such as the cryptography and the hashing, conserves the
confidentiality and the integrity of the mobile agent and
increases the security level.

The suggested architecture emphasizes a generic strategy,
independent of any low level implementation thus allowing its
reuse and its extensibility. The reflexivity was adopted as a
modelling support because it provides a good representation
and an easy handling of oneself. This concept facilitates the
adaptation implantation.

REFERENCES
[1] N. Amara-Hachmi1 and A. El Fallah-Seghrouchni, “Towards a generic

architecture for self-adaptiv,” Proceedings of 5th European Workshop
on Adaptive Agents and MultiAgent Systems (AAMAS’05), Paris, 2005.

[2] P. Bellavista, A. Corradi, C. Frederici, R. Montanari and D. Tibaldi,
“Security for mobile agents: issues and challenges, ” in Invited Chapter
in the Book Handbook of Mobile Computing, I. Mahgoub, M. Ilyas
(eds.), CRC Press, Dec. 2004.

[3] E. Bierman and E. Cloete, “Classification of malicious host threats in
mobile agent computing,” in proceedings of SACICSIT2002, pp. 141-
148.

[4] N. Borselius, “Mobile agent security,” Electronics & Communication
Engineering Journal, vol 14, No 5, IEEE, London, UK, pp. 211-218,
October 2002.

[5] R. Brandt, H. Reiser, “Dynamic adaptation of mobile agents,” in
Heterogeneous Environments, ” in Springer Lecture Notes in Computer
Science 2240, December 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3864International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

[6] O. Charra, “Approche réflexive des liaisons entre objets répartis,” DEA
report, I.M.A.G., Ecole Doctorale Mathématique et Informatique, 2000.

[7] E. de Lara, Dan S. Wallach, and W. Zwaenepoel, “Puppeteer:
Component based adaptation for mobile computing,,” in Proceedings of
the 3rd USENIX Symposium on Internet Technologies and Systems, pp.
159–170, March 2001.

[8] Grimley, M.J. and Monroe, “Protecting the integrity of agents,” in ACM
Magazine, B.D, 1999.

[9] S. Hacini, Z. Guessoum, Z Boufaida, “Using a trust-based key to protect
mobile agent code”, will be published by CCIS 2006, Italy.

[10] T. Ledoux and Noury M.N.Bouraqadi-Saâdani, “Adaptability in mobile
agent systems using reflection,” in ECOOP 2000, Workshop on
Reection and Metalevel Architectures, Cannes, France, 2000.

[11] .S. Leriche, J. Arcangeli., “Vers un modèle d'agent flexible,” In :
Journées Multi-Agent et Composant, JMAC'06, Nîmes, mars 2006.

[12] S. Leriche and J. Arcangeli, “Une architecture pour les agents mobiles
adaptables”, in Journées Composants JC'04, Lille, pp. 1-9, 2004.

[13] J. Riordan and B. Schneier, “Environment key generation towards
clueless agents,” in Lecture Notes in Computer Science 1419, pp. 15-24,
1998.

[14] K. Rothermel and M. Schwehm. “Mobile agents,” Encyclopedia for
Computer Science and Technology, Volume 40, Supplement 25, New
York: M.Dekker, Inc., 1998.

[15] D. Spinellis, "Reflection as a mechanism for software integrity
verification,” in ACM Transactions on Information and System Security,
3(1), pp. 51–62, 2000.

[16] T. Wang, S. Guan, and T. Khoon Chan, “Integrity protection for code-
on-demand mobile agents in e-commerce,” in The Journal of Systems
and Software 60, pp. 211-221, 2000.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:11, 2008

3865International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

11
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

08
9.

pd
f

