Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Authors: Charu Dwivedi, V. Dutta

Abstract:

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Keywords: TiO2 hollow microspheres, spray pyrolysis, electric field, microscopy, microstructures.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057933

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763

References:


[1] J. G. Yu, S. W. Liu, M. H. Zhou, J. Phys. Chem. C, vol. 112, 2008, pp. 2050.
[2] J. G. Yu, S. W. Liu, H. G. Yu, J. Catal., vol. 249, 2007, pp. 59.
[3] H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc., vol. 129, 2007, pp. 8406.
[4] X. Li, Y. Xiong, Z. Li, Y. Xie, Inorg. Chem., vol. 45, 2006, pp. 3493.
[5] J. H. Pan, X. Zhang, A. J. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., vol. 130, 2008, pp. 1256.
[6] Z. Liu, D. D. Sun, P. Guo, J. O. Leckie, Chem. Eur. J., vol. 13, 2006, pp. 1851.
[7] S. Shang, X. Jiao, D. Chen, ACS Appl. Mater. Interfaces., dx.doi.org/10.1021/am201535u|.
[8] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, Adv. Mater., vol. 20, 2008, pp. 195.
[9] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J van de Lagemaat, A. J. Frank, J. Am. Chem. Soc., vol. 125, 2003, 6306.
[10] Y. X. Yin, Z. G. Jin, F. Hou, J. Am. Ceram. Soc., vol. 90, 2007, pp. 2384.
[11] D. Chen, F. Huang, Y. Cheng, A. R. Caruso, Adv. Mater., vol. 21, 2009, pp. 2206.
[12] J. H. Pan, X. Zhang, A. J. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., vol. 130, 2008, pp. 11256.
[13] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, Adv. Mater., vol. 20, 2008, pp. 195.
[14] X. Feng, L. Yang, Y. Liu, Materials Letters, vol. 64, 2010, pp. 2688.
[15] J. Fu, Materials Letters, vol. 68, 2012, pp. 419.
[16] F. Caruso, R. A. Caruso, H. Mo¨hwald, Science vol. 282, 1998, pp. 1111.
[17] C. G. Go¨ltner, Angew. Chem, Int. Ed., vol. 38, 1999, pp. 3155.
[18] C. Dwivedi, V. Dutta, Adv. Nat. Sci: Nanosci. Nanotechnol,vol. 3, 2012, pp. 015011.
[19] J. H. Pan, X. Zhang, A. J. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., vol. 130, 2008, pp. 1125.
[20] W. N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, K. Okuyama, Materials Science and Engineering B, vol.123, 2005, pp. 194.
[21] G. Yang, P. Hu, Y. Cao, F. Yuan, R. Xu, Nanoscale. Res. Lett., vol. 5, 2010, pp. 1437.