
 

 

  
Abstract—This paper describes a methodology for remote 

performance monitoring of retail refrigeration systems. The proposed 
framework starts with monitoring of the whole refrigeration circuit 
which allows detecting deviations from expected behavior caused by 
various faults and degradations. The subsequent diagnostics methods 
drill down deeper in the equipment hierarchy to more specifically 
determine root causes. An important feature of the proposed concept 
is that it does not require any additional sensors, and thus, the 
performance monitoring solution can be deployed at a low 
installation cost. Moreover only a minimum of contextual 
information is required, which also substantially reduces time and 
cost of the deployment process. 
 

Keywords—Condition monitoring, energy baselining, fault 
detection and diagnostics, commercial refrigeration.  

I. INTRODUCTION 

HE refrigeration system typically consumes more than 
50% of the total supermarket energy [1]. Hence it is highly 

important to operate the refrigeration system at its optimum 
performance level. Undetected faults or equipment 
degradations can cause economic losses and potentially violate 
existing strict regulations regarding the food quality. The 
reduction of the equipment downtime, service cost and utility 
cost are the main drivers for on-going research in the 
refrigeration fault detection and diagnostics area. 

There are several approaches how to handle the faults in the 
system. The simplest but most expensive is to perform 
corrective actions only in response to equipment failures – 
fault based corrective maintenance. Smarter and widely used 
approach is the so-called preventive maintenance. In this case 
the maintenance is performed regularly in selected time 
intervals, which are typically based on the equipment 
manufacturer recommendation. But still, the particular 
equipment condition is not taken into account. In contrast to 
that, the condition based maintenance (CBM) aims to trigger 
the maintenance action at the time when it is necessary, i.e. 
when there is a clear evidence of deteriorating performance. If 
the monitoring is done in a systematic way, many “hard”  faults 
can be detected, which would otherwise cause the system to 
stop functioning. Moreover in case of degradations (slowly 
evolving “soft”  faults) the optimum maintenance schedule can 
be determined.  
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Faults can be detected at various levels of the equipment 

hierarchy: the system or circuit level is good for detecting 
general faults, while the equipment or device levels can help to 
detect specific problems, such as the stuck expansion valve.  
Performance monitoring of the refrigeration system may 
include aspects of monitoring and processing of alarms, 
monitoring of process data (temperatures, pressures), and 
monitoring of electricity consumption. 

Typically the refrigeration monitoring and control system 
activates alarms whenever the measured values of key 
parameters (e.g. case temperatures, compressor discharge 
pressure) are out of their predefined ranges. This is the 
commonly used method for indication and alerting of potential 
problems. Analysis of alarm logs can provide additional 
insights. Both manual and advanced pattern recognition 
methods were described in the literature [2], [3]. Sequences or 
combinations of alarms can be learned from historical data, 
and consequently used in real-time for detection of specific 
faults in the current operation. 

From the on-line monitored process data it is possible to 
calculate performance metrics characterizing the system as a 
whole, or its individual parts. Coefficient of performance 
(COP), which is widely used for monitoring of chillers and 
other vapour compression cycle equipment, might be used as a 
natural metric for the system-level monitoring. COP is 
evaluated as the ratio between the delivered cooling energy 
and the total energy input. However the coefficient is very 
hard to calculate due to usually missing mass flow 
measurements. Cooling output is then often replaced by the 
cooling demand, assuming that it is met, calculated by a 
model, which takes into account occupancy schedules, case 
door open signals and other inputs. 

In the electricity consumption monitoring scenario, the 
measured power is systematically compared with a referential 
value (baseline) and any major discrepancy is reported. 
Several approaches can be used to construct the baseline. First 
one determines the expected energy consumption from the 
manufacturer data for electrical devices (compressors, fans, 
door heaters) adjusted to the actual operating conditions [4]. 
The other way is to model the baseline statistically as a 
dependency between the energy consumption and suitable 
explanatory variables.  

Independently of its technical approach, any performance 
monitoring solution has to address the following list of typical 
requirements and desired features, which is a blend of end-
user’s and solution provider’s perspectives.. 
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• Simplicity and robustness – ensure wide solution 
applicability without additional tuning work. 

• No additional sensors – this requirement is a typical 
barrier for the deployment of more sophisticated methods that 
require more data. 

• Minimum deployment efforts (costs) – the less context 
information is required the better. 

• Reasonable computational burden – applies to both 
controller-embedded (on-line) and server-based (off-line) 
analytics. 

• Model adaptability – as the control strategies are often 
changed throughout the season (year) to cope with varying 
operating conditions, any models used in performance 
monitoring need to be adaptable as well. 

• Ability to cope with data inconsistencies, such as missing 
data or outliers.  

• Mitigation of false alarms using confidence bounds or 
similar techniques. 

• Monetization – ability to convert information about faults 
into cost impact. 

• Clearly arranged, easily readable and interpretable result 
visualization. 

 
This paper describes overall concept of a remote 

performance monitoring solution whose core functionality is 
based on a substantially enhanced method for energy 
monitoring and baselining. An important aspect of the 
proposed solution is that it does not require more than the 
“typically available sensor set”, which is understood as a group 
of sensors that can be found practically on any site, despite the 
rather large variety in types of systems and solution providers 
involved. 

The paper is structured as follows. Firstly the energy 
baselining methodology is described (section II) including 
overall system architecture, associated fault and degradation 
detection capabilities in dedicated subsections. This is 
followed by examples of lower level monitoring and 
diagnostics methods in section III. Finally the conclusions are 
made.  

II. ENERGY BASELINING 

Several alternative approaches can be used for development 
of energy baseline models for commercial refrigeration 
systems. But each has some pros and cons.  

Energy models can be based on the first principles: physics, 
thermodynamics or chemistry. But they require a lot of 
contextual information that is very difficult to get in an 
automated way, because there is no standard common 
language (ontology) used by the refrigeration vendors or 
solution providers for the system description. So any model 
which requires rich contextual information is not only quite 
difficult and time consuming to build but it is also hardly 
portable to other systems.  

Statistical models bring more robustness in terms of 
portability and scalability as they are often based only on basic 

measurements and relationships in the refrigeration system 
while neglecting some details. As the need for contextual 
information is significantly smaller, these methods are 
relatively widely applicable, robust and having low 
deployment costs. On the other hand they may be less accurate 
when applied to time series data with short sampling period (in 
minutes). Usually a reasonably good compromise model 
structure can be found as will be also documented in following 
sections.  

A. Remote Monitoring Architecture 

The remote performance monitoring system itself consists of 
several parts as illustrated in Fig. 1. 

System data and electricity measurements are collected by 
the local control system and transferred via a safe link (TCP/IP 
based) to the data warehouse, which is deployed in a remote 
data center. This data transfer is usually performed in a batch-
wise manner, e.g. once per hour. This is appropriate as the 
remote performance monitoring analytics are not supposed to 
run in real-time. Instead, they are used to support the 
interactive work of an energy analyst in the remote data center. 

The data is further processed in the remote data center. Raw 
data integrity checks are applied to the selection of data points 
needed for specific calculations and evident outliers are 
removed. Consequently, the data points are synchronized and 
optionally aggregated in time (e.g. averaged) before they enter 
the core baseline modeling algorithm. The comparison of the 
measured actual data with the expected energy consumption 
(provided with confidence bounds) produces a list of 
deviations, which are further processed in the reasoning layer. 
The final output for the user (energy analyst or operator in the 
remote monitoring centre) is the information whether the 
monitored system is working properly or if there are any 
obvious faults or issues that require further investigation.  

 
Fig. 1 System Architecture 

 
Two types of faults can be detected by the remote analytics 

at the refrigeration system (circuit) level – instantaneous 
anomalies and long-term degradations, which are indicative of 
faults with completely different dynamics. 

B. Data Pre-processing 

Invalid or missing data has to be properly handled because 
otherwise they could cause misleading results. Ideally, some 
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basic form of data pre-processing can be done locally by 
control hardware, before the data is uploaded to the 
warehouse. However, this is not always possible. 

Three data pre-processing tasks can be distinguished in the 
remote monitoring system. The first one is to remove raw 
outliers, i.e. the data outside associated validation ranges. 
Some less evident outliers can be actually left in the data since 
the proposed robust regression method (subsection C) is able 
to cope with them. In the second task, individual time series 
are synchronized and, in the third one, they are aggregated in 
time. The aggregation step is important as it helps to mitigate 
the impact of transient system dynamics. Effective aggregation 
can eliminate the need for a dynamic baseline model, which 
would otherwise increase the overall solution complexity. 

C. The Core Algorithm 

The core algorithm is based on the locally weighted 
regression technique [5], [6], [7] which was selected as a 
method allowing to meet many of the challenging requirements 
summarized in section I.  

The model defined in [8] can be adopted for the purpose of 
energy baseline modeling. Let’s assume sequences of 
independent variables xN = (x1,…,xN) and dependent variable 
yN = (y1,…,yN), where xk is a vector of length m. Further, it is 
supposed that the relation between xk and yk can be described 
by stochastic functional relationship yk = f(xk), k = 1,…,N. The 
data vector x can be mapped onto a feature vector φk=φ(xk), 
possibly of much higher dimension p. This gives a possibility 
to express the functional mapping f(.) as a parametric model, 
which in our case is the linear regression for one scalar 
response yk. 

 

kkky εθϕ +=  (1) 

 
where εk is a noise term and θ is a vector of local model 
coefficients to be estimated from 

 

( ) yWW k
T

kkk
T

k ϕϕϕθ
1−

=  (2) 

 
An estimate of the dependent variable is then obtained by 

 
θϕkky =ˆ  (3) 
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kkky ϕϕϕϕ
1

ˆ
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=  (4) 

 

i
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i
ik yly ∑

=

=
1
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where Wk is a weighting matrix. The last equation (5) 
demonstrates the linearity in y. 

The refrigeration system is modeled using a selected set of 
explanatory variables. This is very often some combination of 
outdoor and indoor air parameters, such as temperature or 

humidity, augmented with time variables and metrics 
representing the load imposed by occupants. 

The local regression method satisfies the adaptability 
requirement by including a serial time variable in the set of 
explanatory variables. Moreover, possible global - in terms of 
the whole space of operating conditions - non-linear 
relationships can be effectively approximated by local linear 
(in coefficients) dependencies. 

From the mathematical point of view there is only one 
strong assumption for calculation of the estimate of the 
expected energy consumption: the invertibility of the matrix 
(φk

ΤWkφk) when computing the weighted least square 
estimation of regression coefficients according to equation (2). 
These practical difficulties can be avoided by a thorough data 
integrity check applied before the estimation algorithm itself. 

Application logic, which is adapted to the specific domain 
of refrigeration systems, divides the required sensor set into 
two groups – mandatory measurements and optional 
measurements. The expected energy consumption cannot be 
calculated in rare cases when any of the mandatory data points 
is missing. When available, the optional data points help to 
improve the estimation accuracy that can be observed on the 
width of calculated confidence bounds. 

The local regression algorithm is implemented in a way that 
a series of predictive models is built on-the-fly for a series of 
states (query points). These energy consumption models are 
created locally considering only the most similar data points 
(N-dimensional list of selected explanatory variables), which 
are weighted by a selected kernel function. The weighting 
function secures the localness of the model as it assigns a 
weight to each data point based on its relative distance, such as 
normalized Euclidean distance, from the query point in the N-
dimensional space. The size of the neighbourhood around the 
query point, and thereby the number of points used for the 
model identification, is affected by the chosen kernel 
weighting function and by the bandwidth parameter applied to 
each individual explanatory variable. 

Though there are methods for an automated bandwidth 
selection [9], the preferred way is to exploit the domain expert 
knowledge to estimate optimum values of these parameters in 
advance. The second important parameter to be chosen is the 
polynomial order for each explanatory variable. The usual 
values are 0, 1 or 2. In fact, setting the polynomial order to 
zero means to build so called nearest neighbours weighted 
average model [10], [11]. This simple kernel smoothing 
method is quite popular, however suffers from the large bias 
especially on the edge of the area given by the kernel function 
span. Polynomial orders in the presented models - linear, 
seldom quadratic - were selected according to expected 
physical dependencies as a trade-off between the bias and 
variance of the estimate. . 

D. Anomaly Detection 

Anomaly is a temporal event with unusual energy 
consumption, i.e. when the energy consumption exceeds the 
upper confidence bound of the expected value estimate. The 
expected energy consumption for given time is evaluated using 
the local data (serial time is also one of explanatory variables) 
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except the data in the nearest time vicinity. This is done in 
order to exclude potentially anomalous data from the baseline 
estimation. 

 

 
Fig. 2 Weighting for anomaly detection 

 
It actually means that only the data points inside the interval 

defined by the selected time bandwidth (e.g., 3 months) are 
used for the baseline evaluation when the kernel with compact 
support is considered. The same weighting mechanism is 
applied in all other dimensions. Fig 2 illustrates only the time 
localness and adaptation capability of the anomaly detection 
algorithm. Should any set point or even the whole control 
strategy be changed, the algorithm builds the referential 
consumption from the similar data within the kernel time span 
with weights applied to all other explanatory variables – both 
external and internal conditions. Then the dominant pattern of 
the similar data points determines the result. 

 

 
Fig. 3 Anomaly detection example - no anomaly detected 

 
In practice it means that any control strategy change with 

non-negligible influence is potentially detected only once - 
possibly as a false alarm - and therefore the energy analyst 
should check the results against the control strategy data. 
Anomalies detected immediately after the control strategy has 
changed should be dismissed. 

Fig. 3 provides demonstration of the anomaly detection 
algorithm applied to real data. The first plot compares the 
actual energy consumption with the estimated one – i.e. 
predicted by the local model. The monetization of the fault is 
straightforward because the discrepancy is measured directly 
in kilowatts. In this particular example no fault was detected. 
There were only small deviations that – after processing by the 
fault reasoning module - didn’t flag any specific fault. 

E. Degradation Detection 

In contrast to anomalies, any degradation is usually a slowly 

developing process that negatively affects the system 
performance. Typical examples in the refrigeration system are 
the refrigerant leakage, condenser coil fouling or compressor 
oil quality degradation. One implementation challenge of any 
degradation detection algorithm is that the impact of 
degradation differs for various system operating conditions. 
Then the degradation process can be assessed by observing 
system performance for the same or very similar conditions for 
a sufficiently long time interval given by the typical 
degradation dynamics. Mean degradation level over all 
possible operating conditions for given time span can be then 
evaluated.  

 

 
Fig. 4 Weighting function in time dimension - degradation detection 

 
The local models based only on the recent data cannot in 

principle provide the degradation detection ability because the 
time distance between the similar data used to build the model 
and the actually measured data is too short compared to a 
typical time scale when the degradation has a clear impact on 
performance. The data used for the baseline construction 
should be thus drawn from the history when the system 
operated at its peak performance. The fixed distance between 
the actually investigated (queried) point and the middle of time 
weighting kernel function was chosen (Fig. 4).  

 

 
Fig. 5 Degradation detection example - worse performance than last 

season for certain driving condition was detected 
 

One year proved to be a good choice as the similar 
conditions in terms of weather can be expected namely in one 
year old data. The progress of degradation can be assessed on 
a continuous basis. The increasing trend of the deviation 
between the measured and expected energy consumption 
means that the particular equipment or system is deteriorating. 
Non-negligible variance of this deviation can be observed as 
the degradation varies for different operating condition 
throughout the year.  

An average degradation trend can be optionally determined 
from the regressed curve and used as an important input for the 
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optimum maintenance planning. Fig. 5 illustrates the 
degradation detection algorithm applied to the same data as in 
Fig. 3. The key difference is that the local models were now 
built based on the last season data. The results indicate the 
system was performing better last year for some range of 
operating conditions. The degradations were evaluated on real 
test data from several sites using more than one year long 
history. At some sites the deviation between the current and 
last year energy consumption for similar operating conditions 
was significant and helped the analysts at the remote 
monitoring centre to prioritize further investigations. 

F. Fault Reasoning 

A clear decision about the fault presence cannot be based 
only on a single deviation between the actually measured 
energy consumption and the baseline. Therefore it is important 
to add a fault reasoning layer at the top of the fault detection 
functionality. In more general context [12], the system 
observations specified by one or more rules are called 
symptoms. Each fault then can have several symptoms that 
support the particular fault presence (also called contributing 
or admitting symptoms) and, on the other hand, can also have 
set of symptoms that deny the particular fault presence (also 
called excluding or cancelling symptoms). Fault likelihoods 
can be calculated based on the evaluated relevant (supporting 
and excluding) symptom values within pre-defined time 
window. 

Two types of faults are considered in the presented concept 
– anomaly and degradation faults. The relative deviation 
between measured and upper confidence bound of the 
estimated baseline is considered as an instantaneous symptom 
relevancy. Both faults have just one symptom supporting the 
fault presence and actually no symptom that would deny the 
fault. Various reasoning techniques [12] can be exploited when 
transforming symptom to the fault likelihood. The presented 
solution implements a robust moving average filtering 
technique. The fault is then reported whenever the aggregated 
level exceeds a predefined threshold. This substantially 
reduces the number of events reported to the operator while 
ensuring that none of the most important is missed. 

III.  EQUIPMENT LEVEL MONITORING 

The system level performance indicators discussed in 
previous sections need to be augmented with equipment level 
analytics with the capability to detect specific faults and 
initiate respective corrective actions. Equipment level 
monitoring significantly narrows the scope of the low level 
fault searching process. Examples of two analytics applied to 
compressors - as the most expensive and most critical pieces 
of equipment within the refrigeration system - are provided in 
the following sections.  

A. Compressor Rack Monitoring 

Compressor rack is one of the most vulnerable and 
expensive parts of the supermarket refrigeration system. 
Usually there are several compressors (typically 3-6) installed 
in one rack to deliver the expected cooling load. 

 

The power or amperage of each compressor in the rack is 
usually available. In this situation, the model for the individual 
compressor amperage draw can be constructed from available 
measurements (suction and discharge pressures and 
temperatures, refrigerant properties and rack control signals). 
The presented work was focused on the most typical 
compressor type - reciprocal - however the model structure is 
general enough so that also other types of compressors can be 
modeled with sufficient accuracy. When any of compressors in 
the rack is working inefficiently due to some failure (e.g., 
leaking valve, increased friction) its capacity is decreased and 
other compressors have to compensate the missing capacity. 
This means that the original relations captured in the model are 
broken and this can be observed as a deviation between 
expected and modeled compressor amperage for given set of 
variables. 

 

 
Fig. 6 Compressor amps draw monitoring 

 
Fig. 6 illustrates the effect of an artificially introduced fault 

on the deviation between the measured amperage and its 
baseline  

B. Liquid Slugging Predictive Detection 

Slugging is a process when the large quantities of liquid 
refrigerant enter the compressor. This can have very 
detrimental effect on the compressor performance. In some 
extreme cases, the machine can be completely destroyed. 
There are several mechanisms, how the liquid slugging 
originates, described in literature (e.g., [13]). The key task is 
to predict the liquid slugging before it actually happens, i.e. to 
detect any dangerous trend in the monitored conditions that 
will likely lead to the liquid slugging.  

One possibility is to exploit existing rule based fault 
detection frameworks such as described in [12]. In a nutshell, 
each liquid slugging causing mechanism was described by a 
set of rules – symptom based on the available measurements. 
There are number of symptoms that contribute to or cancel the 
likelihood of the liquid slugging fault. These dependencies are 
given by a fixed mapping table between faults and symptoms. 
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Fig. 7 AFDD engine – example 

 
They are defined on various levels of the refrigeration 

system according to the particular measurements availability. 
The methodology is very robust regarding to the sensor 
requirements. It means that, e.g., the target system can have 
only the measurements of the refrigerant properties at the 
common suction line at disposal and the algorithm is still able 
to provide some useful results.  

Of course, a richly instrumented refrigeration system with, 
e.g. the superheat measurements at each evaporator,   can be 
diagnosed much better, i.e. the liquid slugging fault (or better 
– increased danger of liquid slugging) can be tracked to its 
origin. The original approach is enhanced by chaining the 
AFDD (automated fault detection and diagnostics) engines 
(see Fig. 7.) from distinct levels of the system. 

IV.  CONCLUSION 

The paper introduced several concepts and algorithms for 
remote performance monitoring of the commercial 
refrigeration systems. In particular, the method for the system 
(circuit) level relative performance indicator evaluation based 
on the energy consumption baselining was proposed. It allows 
distinguishing between the anomalies and degradations 
detection. Both algorithms were validated against real site test 
data. Subsequent fault diagnostics can be supported by 
dedicated equipment level methods described briefly at the end 
of this paper. Proposed methodology has a very low 
deployment cost as there are very modest sensor requirements 
(satisfied already by overwhelming majority of current 
installations – no additional sensors required) and very limited 
contextual information is sufficient for the algorithm 
initialization. 
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