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Abstract—This paper describes a methodology for remote
performance monitoring of retail refrigeration systems. The proposed
framework starts with monitoring of the whole refrigeration circuit
which alows detecting deviations from expected behavior caused by
various faults and degradations. The subsequent diagnostics methods
drill down deeper in the egquipment hierarchy to more specifically
determine root causes. An important feature of the proposed concept
is that it does not require any additional sensors, and thus, the
performance monitoring solution can be deployed a a low
installation cost. Moreover only a minimum of contextual
information is required, which aso substantially reduces time and
cost of the deployment process.

Keywords—Condition monitoring, energy baselining, fault
detection and diagnostics, commercial refrigeration.

|. INTRODUCTION

HE refrigeration system typically consumes more than

50% of the total supermarket energy [1]. Henceit ishighly
important to operate the refrigeration system at its optimum
performance level. Undetected faults or equipment
degradations can cause economic losses and potentially violate
existing strict regulations regarding the food quality. The
reduction of the equipment downtime, service cost and utility
cost are the main drivers for on-going research in the
refrigeration fault detection and diagnostics area.

There are several approaches how to handle the faultsin the
system. The simplest but most expensive is to perform
corrective actions only in response to equipment failures —
fault based corrective maintenance. Smarter and widely used
approach is the so-called preventive maintenance. In this case
the maintenance is performed regularly in selected time
intervals, which are typically based on the equipment
manufacturer recommendation. But still, the particular
equipment condition is not taken into account. In contrast to
that, the condition based maintenance (CBM) aims to trigger
the maintenance action at the time when it is necessary, i.e.
when there is a clear evidence of deteriorating performance. If
the monitoring is done in a systematic way, many “hard” faults
can be detected, which would otherwise cause the system to
stop functioning. Moreover in case of degradations (slowly
evolving “soft” faults) the optimum maintenance schedule can
be determined.
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Faults can be detected at various levels of the equipment
hierarchy: the system or circuit level is good for detecting
general faults, while the equipment or device levels can help to
detect specific problems, such as the stuck expansion valve.
Performance monitoring of the refrigeration system may
include aspects of monitoring and processing of aarms,
monitoring of process data (temperatures, pressures), and
monitoring of electricity consumption.

Typically the refrigeration monitoring and control system
activates alarms whenever the measured values of key
parameters (e.g. case temperatures, compressor discharge
pressure) are out of their predefined ranges. This is the
commonly used method for indication and alerting of potential
problems. Anaysis of alarm logs can provide additional
insights. Both manual and advanced pattern recognition
methods were described in the literature [2], [3]. Sequences or
combinations of alarms can be learned from historical data,
and consequently used in real-time for detection of specific
faultsin the current operation.

From the on-line monitored process data it is possible to
calculate performance metrics characterizing the system as a
whole, or its individua parts. Coefficient of performance
(COP), which is widely used for monitoring of chillers and
other vapour compression cycle equipment, might be used as a
natural metric for the system-level monitoring. COP is
evaluated as the ratio between the delivered cooling energy
and the total energy input. However the coefficient is very
hard to calculate due to usually missing mass flow
measurements. Cooling output is then often replaced by the
cooling demand, assuming that it is met, calculated by a
model, which takes into account occupancy schedules, case
door open signals and other inputs.

In the electricity consumption monitoring scenario, the
measured power is systematically compared with a referential
value (baseline) and any major discrepancy is reported.
Severa approaches can be used to construct the baseline. First
one determines the expected energy consumption from the
manufacturer data for electrical devices (compressors, fans,
door heaters) adjusted to the actual operating conditions [4].
The other way is to model the baseline statistically as a
dependency between the energy consumption and suitable
explanatory variables.

Independently of its technical approach, any performance
monitoring solution has to address the following list of typical
requirements and desired features, which is a blend of end-
user’s and solution provider’s perspectives..
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e Simplicity and
applicability without additional tuning work.

« No additional sensors — this requirement is aicip
barrier for the deployment of more sophisticatedhoés that
require more data.

¢ Minimum deployment efforts (costs) — the less teah
information is required the better.

7,2012

robustness — ensure wide solutiomeasurements and relationships in the refrigeratipstem

while neglecting some details. As the need for extoial
information is significantly smaller, these methodse
relatively widely applicable, robust and having Ilow
deployment costs. On the other hand they may Isealesurate
when applied to time series data with short sarggbieriod (in
minutes). Usually a reasonably good compromise inode

« Reasonable computational burden — applies to bostructure can be found as will be also documentddliowing

controller-embedded (on-line) and server-based -lifod)
analytics.

« Model adaptability — as the control strategies aften
changed throughout the season (year) to cope vetking
operating conditions, any models used
monitoring need to be adaptable as well.

« Ability to cope with data inconsistencies, sushnaissing
data or outliers.

« Mitigation of false alarms using confidence bosinat
similar techniques.

« Monetization — ability to convert information alidaults
into cost impact.

e Clearly arranged, easily readable and interptetedsult
visualization.

This paper describes overall concept of a
performance monitoring solution whose core fundldn is
based on a substantially enhanced method for ene
monitoring and baselining. An important aspect ¢ t
proposed solution is that it does not require mihian the
“typically available sensor set”, which is undemsias a group
of sensors that can be found practically on arg; sigéspite the
rather large variety in types of systems and swoiufiroviders
involved.

The paper is structured as follows. Firstly the rgpe
baselining methodology is described (section Iigluding
overall system architecture, associated fault aagratiation
detection capabilities in dedicated subsections.is Tis
followed by examples of lower level
diagnostics methods in section Ill. Finally the closions are
made.

Il. ENERGY BASELINING

Several alternative approaches can be used fotapsment
of energy baseline models for commercial refrigerat
systems. But each has some pros and cons.

Energy models can be based on the first princigibgsics,
thermodynamics or chemistry. But they require a ddt
contextual information that is very difficult to tgén an
automated way, because there
language (ontology) used by the refrigeration vesdor
solution providers for the system description. 3§ aodel
which requires rich contextual information is natlyo quite
difficult and time consuming to build but it is aldhardly
portable to other systems.

Statistical models bring more robustness in ternfis
portability and scalability as they are often basely on basic
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sections.

A.Remote Monitoring Architecture

The remote performance monitoring system itselfia of
several parts as illustrated in Fig. 1.

System data and electricity measurements are tetiday
the local control system and transferred via a kalkg(TCP/IP
based) to the data warehouse, which is deployed remote
data center. This data transfer is usually perfarinea batch-
wise manner, e.g. once per hour. This is apprapriet the
remote performance monitoring analytics are nopsspd to
run in real-time. Instead, they are used to suppb#
interactive work of an energy analyst in the rend#ta center.

The data is further processed in the remote datgeceRaw
data integrity checks are applied to the seledtifotiata points
feeded for specific calculations and evident oliere
removed. Consequently, the data points are synz@drand

tionally aggregated in time (e.g. averaged) keetbey enter
r%% core baseline modeling algorithm. The comparisbthe
measured actual data with the expected energy ogisn
(provided with confidence bounds) produces a list o
deviations, which are further processed in theaweiag layer.
The final output for the user (energy analyst oerapor in the
remote monitoring centre) is the information whethbe
monitored system is working properly or if theree aany
obvious faults or issues that require further itigasion.
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g
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| |
I Eth

single Site — XcM
executive
(10r more)
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ernet TCP/IP

HVAC, Lighting &
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controllers

Fig. 1 System Architecture

is no standard common

Two types of faults can be detected by the remoédytics
at the refrigeration system (circuit) level — imgtneous
anomalies and long-term degradations, which arigatige of
faults with completely different dynamics.

B.Data Pre-processing

Invalid or missing data has to be properly handiedause
otherwise they could cause misleading results. lliesome

(0]
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basic form of data pre-processing can be done Nodat

humidity, augmented with time variables and metrics

control hardware, before the data is uploaded te thiepresenting the load imposed by occupants.

warehouse. However, this is not always possible.

Three data pre-processing tasks can be distingliishthe
remote monitoring system. The first one is to reengaw
outliers, i.e. the data outside associated vabdatianges.
Some less evident outliers can be actually lefhendata since
the proposed robust regression method (subseciias &ble
to cope with them. In the second task, individuiet series
are synchronized and, in the third one, they agregmted in
time. The aggregation step is important as it hedpsnitigate
the impact of transient system dynamics. Effectiggregation
can eliminate the need for a dynamic baseline moaleich
would otherwise increase the overall solution caripy.

C.The Core Algorithm

The core algorithm is based on the locally weighte

regression technique [5], [6], [7] which was sedectas a
method allowing to meet many of the challenginguresments
summarized in section .

The model defined in [8] can be adopted for theppse of
energy baseline modeling. Let's assume sequences

independent variableg, = (Xy,...,%) and dependent variable

Wn = (Yo...,)), Wherex, is a vector of lengtim. Further, it is
supposed that the relation betwegrandy, can be described
by stochastic functional relationshjp= f(xy), k = 1,...,N The
data vectorx can be mapped onto a feature veeigro(Xy),
possibly of much higher dimension p. This givesoagibility
to express the functional mappif{g as a parametric model,
which in our case is the linear regression for woalar
responsey.
Y =9 +& 1)
where g, is a noise term and is a vector of local model
coefficients to be estimated from

-1
0= (¢kTWk¢k) ¢kTka (2
An estimate of the dependent variable is then nbthby
Y =40 (3)
N T -1 T
Yi :¢k(¢k Wk¢k) ¢ W,y (4)
N
=21y, ®)
i=1

The local regression method satisfies the adajiabil
requirement by including a serial time variabletlie set of
explanatory variables. Moreover, possible global terms of
the whole space of operating conditions - non-linea
relationships can be effectively approximated bgaldinear
(in coefficients) dependencies.

From the mathematical point of view there is onlyeo
strong assumption for calculation of the estimafe ttee
expected energy consumption: the invertibility bé tmatrix
(pWp) when computing the weighted least square
estimation of regression coefficients accordingdoation (2).
These practical difficulties can be avoided by @erdlugh data
integrity check applied before the estimation aithon itself.

Application logic, which is adapted to the specifiemain

f refrigeration systems, divides the required eerset into

WO groups — mandatory measurements and optional
measurements. The expected energy consumption tcaeno
calculated in rare cases when any of the manddaiatsy points

is missing. When available, the optional data moimlp to
improve the estimation accuracy that can be obdeovethe
vidhth of calculated confidence bounds.

The local regression algorithm is implemented inay that
a series of predictive models is built on-the-tty & series of
states (query points). These energy consumptionelmcate
created locally considering only the most similatad points
(N-dimensional list of selected explanatory vargs)] which
are weighted by a selected kernel function. Theghteig
function secures the localness of the model assstgas a
weight to each data point based on its relativeadce, such as
normalized Euclidean distance, from the query pivirthe N-
dimensional space. The size of the neighbourhoodnak the
query point, and thereby the number of points ueedthe
model identification, is affected by the chosen niegr
weighting function and by the bandwidth parametsliad to
each individual explanatory variable.

Though there are methods for an automated bandwidth
selection [9], the preferred way is to exploit ttammain expert
knowledge to estimate optimum values of these patenms in
advance. The second important parameter to be chsdbe
polynomial order for each explanatory variable. Timual
values are 0, 1 or 2. In fact, setting the polyrednoirder to
zero means to build so called nearest neighbouightesl
average model [10], [11]. This simple kernel smaoah
method is quite popular, however suffers from tgé bias
especially on the edge of the area given by thedtdunction
span. Polynomial orders in the presented modelmeal,
seldom quadratic - were selected according to dgdec
physical dependencies as a trade-off between ths &nd
variance of the estimate. .

where W, is a weighting matrix. The last equation (5) D-Anomaly Detection

demonstrates the linearity yn

The refrigeration system is modeled using a sefestt of
explanatory variables. This is very often some doation of
outdoor and indoor air parameters, such as temperair
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Anomaly is a temporal event with unusual energy
consumption, i.e. when the energy consumption alcdiee
upper confidence bound of the expected value einfehe
expected energy consumption for given time is eateld using
the local data (serial time is also one of explanavariables)
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except the data in the nearest time vicinity. Tisi<lone in developing process that negatively affects the esyst
order to exclude potentially anomalous data fromhhseline performance. Typical examples in the refrigeraigatem are
estimation. the refrigerant leakage, condenser coil foulingcompressor
oil quality degradation. One implementation chajerof any
A A A L A S degradation detection algorithm is that the impauft

> %\Query point vicinity

vy ot 1 degradation differs for various system operatingditons.
s
|
|
|
|
|
|
1

i Then the degradation process can be assessed égviobs
system performance for the same or very similaditamms for
] a sufficiently long time interval given by the tgpl

degradation dynamics. Mean degradation level ovér a
Fig. 2 Weighting for anomaly detection possible operating conditions for given time span be then
evaluated.

It actually means that only the data points ingfdeinterval
defined by the selected time bandwidth (e.g., 3thnare [Fwwee- ' ‘ .

Query point—___

used for the baseline evaluation when the kerngtl @@mpact -+ .
support is considered. The same weighting mecharigsm “f S 1
applied in all other dimensions. Fig 2 illustratesy the time | '
localness and adaptation capability of the anordaiection | | y 3
algorithm. Should any set point or even the whatat®l Fig. 4 Weighting function in time dimension - degmtion detection
strategy be changed, the algorithm builds the eefal

consumption from the similar data within the kertigle span The local models based only on the recent datactann

with weights applied to all other explanatory vatés — both principle provide the degradatipn detection abinchuse the
external and internal conditions. Then the dominmaitern of time distance between the similar data used tallih# model

the similar data points determines the result. and the actually measured data is too short cordptrea
typical time scale when the degradation has a d¢iepact on
ANOMALY DETECTION: Crei@Poner performance. The data used for the baseline canistnu

Py Power Measured
i "

mccuniecos| Should be thus drawn from the history when the esgst
N 117 UpporBond operated at its peak performance. The fixed distd@tween
the actually investigated (queried) point and thede of time

weighting kernel function was chosen (Fig. 4).

Power [(\]

10123111 10/30

T —v—Fault Rel.
Monetization

05 —

DEGRADATION DETECTION: CircuitBPower

L b
o311 O30

—o—OAT 1012311 1030
+—IADPT

OARH

T
. £ SN & N
R A eI N
T N

% - . jw s o IAT 1+ s —=— Fault Rel
kw:wmww%wwk— sy e T N g 08 Monetization
sl s “ v X’@ 2;,«‘ N w¥ 06l 4
10/2‘3/11 . 10:30 0.4
Fig. 3 Anomaly detection example - no anomaly detic 2 gt | Ll
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In practice it means that any control strategy gleawith
non-negligible influence is potentially detectedlyoonce -
possibly as a false alarm - and therefore the gnanglyst y ‘
should check the results against the control gya®ata. rig 5 pegradation detection example - worse pevéoice than last
Anomalies detected immediately after the contradtsgy has season for certain driving condition was detected
changed should be dismissed.

Fig. 3 provides demonstration of the anomaly detact One year proved to be a good choice as the similar
algorithm applied to real data. The first plot cargs the conditions in terms of weather can be expected hamene
actual energy consumption with the estimated onée- year old data. The progress of degradation carsbesaed on
predicted by the local model. The monetizationhaf fault is a continuous basis. The increasing trend of theiatien
straightforward because the discrepancy is measiiredtly between the measured and expected energy consamptio
in kilowatts. In this particular example no faulasvdetected. means that the particular equipment or systemtirigeating.
There were only small deviations that — after pssiey by the Non-negligible variance of this deviation can beserved as

fault reasoning module - didn't flag any specifitift. the degradation varies for different operating Gt
] . throughout the year.
E.Degradation Detection An average degradation trend can be optionallyroeted

In contrast to anomalies, any degradation is ugaadlowly from the regressed curve and used as an importaut for the
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optimum maintenance planning. Fig. 5
degradation detection algorithm applied to the sdaia as in
Fig. 3. The key difference is that the local modeé&re now
built based on the last season data. The resulisaite the
system was performing better last year for someyeaof
operating conditions. The degradations were evatuah real
test data from several sites using more than ome g
history. At some sites the deviation between theecut and
last year energy consumption for similar operatogditions
was significant and helped the analysts at the tem
monitoring centre to prioritize further investigats.

F.Fault Reasoning

A clear decision about the fault presence cannobdsed
only on a single deviation between the actually snesd
energy consumption and the baseline. Therefoeithportant
to add a fault reasoning layer at the top of thét fdetection
functionality. In more general context [12], the stm
observations specified by one or more rules ardecal
symptoms. Each fault then can have several symptbats
support the particular fault presence (also cadledtributing
or admitting symptoms) and, on the other hand,also have
set of symptoms that deny the particular fault @nes (also
called excluding or cancelling symptoms). Faultelikoods
can be calculated based on the evaluated relesapp@rting
and excluding) symptom values within pre-definedneti
window.

Two types of faults are considered in the preseoteatept
— anomaly and degradation faults. The relative atéwi
between measured and upper confidence bound of
estimated baseline is considered as an instantarsymoptom
relevancy. Both faults have just one symptom suippithe
fault presence and actually no symptom that wowdydthe
fault. Various reasoning techniques [12] can bdatgn when
transforming symptom to the fault likelihood. Theegented
solution implements a robust moving average fittgri
technique. The fault is then reported wheneveratjgregated
level exceeds a predefined threshold. This subatgnt
reduces the number of events reported to the apevdtile
ensuring that none of the most important is missed.

IIl.  EQUIPMENT LEVEL MONITORING

The system level performance indicators discussed
previous sections need to be augmented with equiplaeel
analytics with the capability to detect specificulfa and
initiate  respective corrective actions. Equipmergvel
monitoring significantly narrows the scope of tlavllevel
fault searching process. Examples of two analyjeglied to
compressors - as the most expensive and mostatrntieces
of equipment within the refrigeration system - previded in
the following sections.

A.Compressor Rack Monitoring

illustratese th The power or amperage of each compressor in theisac

usually available. In this situation, the model fioe individual
compressor amperage draw can be constructed fraitalale
measurements (suction and discharge pressures
temperatures, refrigerant properties and rack obsignals).
The presented work was focused on the most typical
compressor type - reciprocal - however the modeksire is
general enough so that also other types of commessn be
modeled with sufficient accuracy. When any of coasgors in

and

%he rack is working inefficiently due to some fadu(e.qg.,

leaking valve, increased friction) its capacitydicreased and
other compressors have to compensate the misspearita
This means that the original relations capturetthémodel are
broken and this can be observed as a deviation eeetw
expected and modeled compressor amperage for gateaf
variables.

21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

21:00 00:00 03:00

06:00 09:00 12:00 15:00 18:00
Time

Fig. 6 Compressor amps draw monitoring

Fig. 6 illustrates the effect of an artificiallytinduced fault
on the deviation between the measured amperageitand
baseline

B.Liquid Slugging Predictive Detection

Slugging is a process when the large quantitieiqoid
refrigerant enter the compressor. This can havey ver
detrimental effect on the compressor performannesdme
extreme cases, the machine can be completely gledtro
There are several mechanisms, how the liquid shgggi
originates, described in literature (e.g., [13]heTkey task is
to predict the liquid slugging before it actuallggpens, i.e. to
detect any dangerous trend in the monitored canditithat
will likely lead to the liquid slugging.

One possibility is to exploit existing rule basedult
detection frameworks such as described in [12h hutshell,
each liquid slugging causing mechanism was destrthea
set of rules — symptom based on the available meamsnts.
There are number of symptoms that contribute tcaoicel the

Compressor rack is one of the most vulnerable arikelihood of the liquid slugging fault. These depencies are

expensive parts of the supermarket refrigeratiostesy.
Usually there are several compressors (typicalg) 8istalled
in one rack to deliver the expected cooling load.
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given by a fixed mapping table between faults amdpgoms.
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Fig. 7 AFDD engine — example

A,B,C,DEF ... measurements
Thr... Thresholds

They are defined on various levels of the refrigera
system according to the particular measurementsabiliy.
The methodology is very robust regarding to theseen
requirements. It means that, e.g., the target systen have
only the measurements of the refrigerant properéieghe

the 4th Asia Pacific Conference on Simulated Evefutand Learning
(SEAL), Singapore, 2002.

[4] Abtar Singh, Paul Wickberg, Thomas J Mathews, amalNStarling,
System for remote refrigeration monitoring and diagyics, US Patent
7644591, 2010.

[5] Wiliam S. Cleveland, Robust Locally Weighted Reggien and
Smoothing Scatterplots, Journal of the AmericartiSteal Association,
vol. 74, pp. 829-836, 1979.

[6] Wiliam S. Cleveland and Susan J. Devlin, Locallyeighted
Regression: An Approach to Regression Analysis logal Fitting,
Journal of the American Statistical Associationl. \88, pp. 596-610,
1988.

[7] Trevor Hastie, Robert Tibshirani, and Jerome FridnThe Elements
of Statistical Learning, Second Edition: Data Mupirinference, and
Prediction, 2nd ed.: Springer, 2009.

[8] K. Marik, Z. Schindler, and P. Stluka, Decision pag tools for
advanced energy management, Energy, vol. 33, [§8883, 2008.

[9] Clive R. Loader, Bandwidth selection: classicaplug-in?, The Annals

of Statistics, vol. 27, pp. 415-438, 1999.

Geoffrey S. Watson, Smooth regression analysiski8an The Indian

Journal of Statistic, vol. 26, pp. 359-372, 1964.

[11] E. A. Nadaraya, On estimating regression, Theorgrobability and its
Applications, vol. 9, pp. 141-142, 1964.

[12] J. Kukal, K. Macek, J. Rojicek, and J. Trojanokegm Symptoms to
Faults: Temporal Reasoning Methods, In the Pro8926t. Conference
on Adaptive and Intelligent Systems, Klagenfurtskia, 2009.

[10]

common suction line at disposal and the algorithrstill able [13] panfoss. (2009) Why Compressors Fail - Liquid Slagg [Online].
to provide some useful results. http://www.ra.danfoss.com/Technicalinfo/Approval®s/RAPIDFiles/
; ; ; ; ; 17/Article/LiquidSlugging/Why Compressors Fail Partveb.pdf.

Of course, a richly instrumented refrigeration eystwith, [14] Dan W Taylor and David W Corne, An Investigationtbé Negative
e.g. the superheat measurements at each evaporatm, be Selection Algorithm for Fault Detection in Refrigéion Systems, In the
diagnosed much better, i.e. the liquid sluggindtféar better Proceeding of Second International Conference difiédal Immune
— increased danger of liquid slugging) can be edcto its Systems (ICARIS), Edinburgh, UK, 2003, pp. 34-45.

igin. Th iginal hi h d b inih [15] D. Ruppert and M.P.Wand, Multivariate Locally Wetigth Least Square
origin. € orginal approac '_S en anc? y Cmn e Regression, The Annals of Statistics, vol. 22,846-1370, 1994.
AFDD (automated fault detection and diagnosticsyires
(see Fig. 7.) from distinct levels of the system.

V. CONCLUSION

The paper introduced several concepts and algasittum

remote performance monitoring of the commercial

refrigeration systems. In particular, the methodtf® system
(circuit) level relative performance indicator evation based
on the energy consumption baselining was propdsatlows

distinguishing between
detection. Both algorithms were validated agaigst site test
data. Subsequent fault diagnostics can be suppdoied
dedicated equipment level methods described brigftiie end
of this paper.
deployment cost as there are very modest sensoireatgnts
(satisfied already by overwhelming majority of @nt
installations — no additional sensors required) ey limited
contextual information is sufficient for the algiin

initialization.
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