
 

 

  
Abstract—Transition prediction of boundary layers has always 

been an important problem in fluid mechanics both theoretically and 
practically, yet notwithstanding the great effort made by many 
investigators, there is no satisfactory answer to this problem. The most 
popular method available is so-called e-N method which is heavily 
dependent on experiments and experience. The author has proposed 
improvements to the e-N method, so to reduce its dependence on 
experiments and experience to a certain extent. One of the key 
assumptions is that transition would occur whenever the velocity 
amplitude of disturbance reaches 1-2% of the free stream velocity. 
However, the reliability of this assumption needs to be verified. In this 
paper, transition prediction on a flat plate is investigated by using both 
the improved e-N method and the parabolized stability equations (PSE) 
methods. The results show that the transition locations predicted by 
both methods agree reasonably well with each other, under the above 
assumption. For the supersonic case, the critical velocity amplitude in 
the improved e-N method should be taken as 0.013, whereas in the 
subsonic case, it should be 0.018, both are within the range 1-2%. 
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I. INTRODUCTION 

HE prediction of laminar-turbulent transition in boundary 
layer has always been an important problem in fluid 

mechanics both from theoretical and practical points of view. 
Yet the most popular method for its prediction, the so called 
e-N method, is largely a semi-empirical method[1].  

Su & Zhou[2]-[3] have analyzed the problems existing in the 
conventional e-N method and proposed certain improvements, 
so to reduce its dependence on  experiments or experience. The 
improvements include a new transition criterion and some 
considerations of receptivity. Yet basically, it is still a method 
relying on linear stability theory under parallel assumption.  

Obviously, to make the prediction method reliable and more 
rational, one has to check, first, how big the error would be in 
using the parallel assumption; and second, what would be the 
error in using the new transition criterion, i.e. transition would 
take place whenever the velocity amplitude of disturbance in 
the improved e-N method reaches 1-2% of the free stream 
velocity. 

In fact, the first problem mentioned above is not a serious 
one, because the results from linear stability theory (LST) have 
already been compared many times with those from direct 
numerical simulation and results from applying the parabolized 
stability equation (PSE)[4]-[10]. The conclusion was, when the  
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Reynolds number is large, which is exactly the case for most 

transition problem, the difference was insignificant. So our 
main concern would be the second problem, i.e. if the new 
transition criterion is reasonable.  

We would solved this problem by comparing results from 
applying e-N method and by using PSE, as it has been shown in 
[11]-[12] that results from applying PSE in predicting the 
transition location is comparable with those from DNS, 
provided the initial conditions are the same in both methods. 
However, there is a profound difference between the e-N 
method and the PSE method for predicting the transition 
location. In the e-N method, one seeks to find the T-S wave, 
whose amplitude reaches the given threshold for transition first 
among all possible T-S waves, see [2]-[3]. While in PSE, a 
single T-S wave cannot trigger transition, one has to choose 
more than one T-S waves, in order to finally trigger transition. 
So the problem is how to choose the initial set of T-S waves, 
which is comparable with the single wave in e-N method, and 
then compare the transition location determined by both 
methods.  

II. TRANSITION PREDICTED BY THE IMPROVED E-N METHOD 

The transition of the boundary layer on a flat plate is 
investigated. The Mach number of the oncoming flow is 
M=0.3. The Reynolds number is 2000, based on the 
displacement thickness of the boundary layer at the inlet of the 
computational domain, the velocity, density and viscosity 
coefficient of the free-stream. The wall temperature condition 
is adiabatic. The basic flow is given by the similarity solution. 

At first the improved e-N method is used for predicting the 
transition location. It is done as follows: the computation starts 
from the location where the amplitude of the disturbance wave 
can be reasonably estimated, not as in the conventional e-N 
method that starts from the ZARF or neutral curves. The 
transition location is so determined that among all the locations 
that a certain T-S wave’s amplitude reaches the threshold 
amplitude Atr for transition, the most upstream one is the 
location of transition. We assume that at the inlet of our 
computational domain, all T-S waves have the same initial 
velocity amplitude 0.3‰ of the free stream velocity.  

The integration starts from the inlet of the computational 
domain. For subsonic flows, two-dimensional T-S waves 
dominant the transition. Figure 1 shows the variations of the 
amplitude of some T-S waves with different frequencies in in 
the downstream direction. The amplitude A is determined by 
using (1). 
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α−∫=                                   (1) 

Where A0 is the initial velocity amplitude, which is consumed 
to be 0.3‰, and ��� represents the amplification rate in the x 
direction. x0 is the start location of the integration. The wave 
that reaches the threshold value Atr first is the dominant one and 
determines the transition location. 

Curves in figure 2 show the location where the amplitude of 
wave with different frequency reaches the value Atr, and the 
location of the point on the curve having the smallest value of x 
is the transition location. For instance, the transition location is 
x=360 if Atr=0.01, and the corresponding wave frequency is 
about 0.06.  

 
Fig. 1 Amplitude of T-S waves with different frequency 

 
Fig. 2 Results obtained by the e-N method 

III.  TRANSITION PREDICTED BY USING THE PSE 

In the PSE method, the disturbance vector ϕ is expressed as 
φ��, �, 	, 
�
�   φ�����, ��e��� � ��������

�� ��������� !�
"

�#�"

"

�#�"
 

(2) 
Where φ� � �$%, &%, '%, (�, )*�+  is the shape function vector. x, y 
and z the stream-wise, normal-wise and span-wise coordinates, 
respectively; t the time, �,,  the stream-wise and span-wise 
wave number, respectively. 

The governing equations and the numerical method to solve 
the equations can be found in many related references, for 
example in [13]. 

As mentioned above, in using PSE to predict transition, the 
initial condition should consist of more than one T-S waves. In 
the above example, the T-S waves considered in the improved 
e-N method are 2-D waves. So in the PSE method, we also 
should have one 2-D wave. Then what should be the other 

waves？ In nonlinear stability theory, there are famous models 

for nonlinear instability, i.e. the resonant triad and secondary 
instability. Both assume a pair of oblique waves having 
frequency half of the 2-D wave, because the nonlinear 
interaction between such waves would be the strongest under 
this assumption. So we also take similar model for our PSE 
method, i.e. the initial condition consist of a 2-D T-S wave and 
a pair of oblique T-S waves having frequency the half of the 
2-D wave.  

At first, it seems there can be infinite set of oblique waves, 
as it can have arbitrary span-wise wave number. However, in 
the e-N method, only waves with a real group velocity are 
considered, here the same principle is adopted. The span-wise 
wave number of the oblique waves is fixed by the condition
( ) 0

i
α β∂ ∂ = . The results, i.e. the so found span-wise wave 

numbers, are shown in Table I. In the improved e-N method as 
applied above, it is assumed that all waves, no matter what 
frequencies they have, have the same initial amplitude 0.3‰. In 
the PSE method for comparison, the same assumption should 
be used, so the amplitude of either of the two oblique waves 
should be 0.15‰.  

 
TABLE I  

PARAMETERS CHOSEN IN THE COMPUTATION FOR PSE 

Cases 
Frequency of basic 

wave 
Span-wise wave number 

of oblique wave 
1 0.049 0.21 
2 0.051 0.21 
3 0.055 0.20 
4 0.065 0.17 
5 0.069 0.16 
6 0.075 0.15 

 
The computation of PSE method ends at the location where 

the wall shear stress rises abruptly, which is assumed to be the 
location of transition triggered by that initial wave set, 
including one 2-D T-S wave and a pair of oblique T-S waves. 
Figure 3 shows the distribution of the wall friction coefficient 
Cf in the stream-wise direction. The rise of Cf curve indicates 
the transition onset. 

 
Fig. 3 Distribution of friction coefficient in the stream-wise direction 
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Figure 4 shows the results of both the improved e-N method 
and the PSE methods. The most upstream point on each curve 
determines the transition location under the respective criteria 
of transition. For example, for the improved e-N method, the 
predicted transition location would be x=360, 450, 500, 
corresponding to Atr=0.01, 0.02, 0.03 respectively, while for 
the PSE method, the transition location predicted is x=440. In 
fact, if in the improved e-N method, Atr is taken to be 0.018, 
which is within the range 1-2% of free stream velocity as 
mentioned in the above introduction, then the transition 
location predicted by both methods would be the same. By the 
way, the frequencies of the 2-D waves triggering the transition 
in both methods are also roughly close to each other. 

 
Fig. 4 Transition location predicted by the both methods 

 
Fig.5 shows the velocity amplitude of the 2-D waves with 

frequencies 0.065 and 0.069, computed by both methods. The 
frequencies correspond to cases close to the critical case in PSE 
method. It can be seen that up to the point where transition is 
predicted by PSE method, the amplitudes of the 2-D wave 
predicted by both methods are close to each other. 

 
Fig. 5 Development of umax 

IV. A SUPERSONIC CASE 

The transition of a supersonic boundary layer on a flat plate 
is also investigated in the similar way. The Mach number of the 
oncoming flow is M=6. The Reynolds number is 36000, 
defined in the same way as the subsonic case above. The wall 
temperature condition is adiabatic, too. The initial condition of 
disturbances is the same as the subsonic case.  

The stability character is different from the subsonic case 
because there are two Mack T-S modes in the boundary layer. 
For supersonic boundary layers, when the Mach number is 
larger than 4, then the most unstable wave would be 2-D waves. 
So the initial disturbance waves in the PSE method are 
determined by the same way as in the subsonic case above.The 
parameters of the initial T-S waves are shown in Table II. 

 
TABLE II 

PARAMETERS OF T-S WAVES IN THE COMPUTATION  
FOR SUPERSONIC CASE 

Cases 
Frequency of 
2-D T-S wave 

Streamwise 
wave number of 

2-D wave 

Span-wise wave 
number of oblique 

wave 
1 1.6 1.73 1.33 
2 1.7 1.83 1.35 
3 1.8 1.91 1.38 
4 1.9 2.01 1.40 
5 2.0 2.14 1.42 
6 2.04 2.19 1.43 

 
With the known initial disturbances, we follow their 

evolution by using PSE. For some supersonic cases the wall 
friction coefficient has not risen yet when the computation 
breaks down, inferring that the evolution of the disturbances 
becomes drastic. Therefore the location where the computation 
breaks down, or the friction coefficient Cf increases drastically, 
will be seen as the start of the transition.  

The distribution of Cf in the stream-wise direction is shown 
in fig. 6. The Cf curve does not rise for the case ω � 2.0 when 
the computation breaks down at x=94. A slight rise of Cf curves 
can be found in the other cases.  

 
Fig. 6 Distribution of Cf in the stream-wise direction 

 
Figure 7 shows the comparison of the results obtained by 

both the improved e-N method and the PSE methods. The 
transition location obtained by the PSE method is x=80, which 
is exactly in the range of transition location predicted by the 
improved e-N method using the transition criterion Atr=0.01, 
0.02, respectively. If in the improved eN method, Atr is taken to 
be 0.013, the transition location predicted by both methods 
would be the same. The transition criterion adopted in the 
improved e-N method is reasonable. Considering both the 
subsonic and supersonic cases the transition criteria in the 
improved e-N could be taken as Atr=0.015. The frequency of 
the wave triggering the transition is also slightly bigger than 
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that in the improved e-N method, similar to the subsonic case. 
The reason is thought to be the influence of the nonparallelism 
and nonlinear effects. More work is underway for further 
verification. 

 
Fig. 7 Transition location predicted by the both methods for the 

supersonic flow 

V. CONCLUSION 

The conventional e-N method is a semi-empirical method, 
with no consideration on receptivity, and no consideration on 
physical criterion for transition. In the improved e-N method, 
the initial location of integration and the initial amplitude of the 
T-S wave are determined by a certain consideration on 
receptivity mechanism, and the transition criterion is taken to 
be that the disturbance wave’s amplitude reaches 1-2% of the 
free stream velocity, as indicated from results of DNS for 
transition. However, it still bears some simplifications, which 
should be checked by other more sophisticated method. In this 
paper, PSE method is used to check the results from the 
improved e-N method. The result of comparison does provide 
evidence that the improved e-N method bears some rationality. 
Of course, more work needs to be done, for example, cases of 
supersonic and hypersonic flows should be studied further, 
which is underway. 
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