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Abstract—Many-core GPUs provide high computing ability and
substantial bandwidth; however, optimizing irregular applications
like SpMV on GPUs becomes a difficult but meaningful task. In this
paper, we propose a novel method to improve the performance of
SpMV on GPUs. A new storage format called HYB-R is proposed to
exploit GPU architecture more efficiently. The COO portion of the
matrix is partitioned recursively into a ELL portion and a COO
portion in the process of creating HY B-R format to ensure that there
are as many non-zeros as possible in ELL format. The method of
partitioning the matrix is an important problem for HYB-R kerndl, so
we also try to tune the parameters to partition the matrix for higher
performance. Experimenta results show that our method can get
better performance than the fastest kerne (HYB) in NVIDIA’s
SpMYV library with as high as 17% speedup.

Keywords—GPU, HYB-R, Many-core, Performance Tuning,
SpMV

l. INTRODUCTION

ANY -CORE architectures like GPUs become more and

more popular, because they can offer both high peak
computational throughput and high peak bandwidth, which are
much higher than those of conventional multi-core platforms
based on general-purpose CPUs. That is good news for high
performance computing community, but there is no free lunch.
We can get high performance more easily with regular
applications like dense matrix multiplication on GPUs, while it
is more difficult to efficiently exploit the advantages of GPUs
for irregular applications like Sparse Matrix Vector
Multiplication (SpMV).

SpMV can be described as follows. y«—Ax+y, where A isa
sparse matrix, X and y are both dense vectors. SpMV is a very
important kernel used in scientific and engineering
computations. Methods for efficiently computing SpMV are
often critical to the performance of many applications.

SpMV is memory bandwidth-bound and GPUs offer
sufficiently high bandwidth, so it is an opportunity to improve
the performance of SpMV on GPUs. But it is aso a challenge
to optimize SpMV on GPUs because SpMV is an irregular
computation which requires many indirect and irregular
memory accesses. Irregular memory accesses usualy lead to
low bandwidth efficiency on GPUs, so we need to develop new
data formats to store sparse matrices on GPUs in order to make
good use of GPUs' high bandwidth.

There are three contributionsin this paper.
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First, after analyzing the experimenta data, we find that the
best kernel in NVIDIA’s SpMV library, HYB[7], does not
work perfectly, and there is still some space to improve the
performance of HYB kernel because there are still a large
number of non-zeros in the COO portion of HYB for some
matrices.

Second, we propose a new storage format called HYB-R.
HYB partitions a matrix into two parts, ELL and COO, while
HYB-R partitions a matrix recursively into ELL and COO.
That means the COO portion of the matrix can be partitioned
into ELL and COO recursively to form the HY B-R format only
if there are enough non-zeros in the COO portion. So there are
usualy more non-zeros placed in ELL portion for HYB-R
format than HYB format. Because the ELL kernel is roughly
three times faster than COO kernel, we can conclude that the
HYB-R kernd is faster than HYB kernel. Experimental results
also show that HY B-R kerndl can get better performance than
HY B kernel, with as high as 17% improvement.

Third, we find that the partition method used in HY B format
is not the optimal, so we try to tune the parameters on how to
partition the matrix. The parameter K is used to partition the
matrix into ELL and COO. K is the number of columnsin the
ELL portion. Two methods are used to choose K in the
experiment, but it is found that neither method is the optima
and further efforts are still needed to tune the parameter K.

II.  Spmv ON GPUS

In this section, several storage formats for sparse matrices
are introduced, CSR, COO, ELL and HYB. Optimization
methods using these storage formats on GPUs are aso
represented.

A CR

The compressed sparse row (CSR) format is one of the most
popular general-purpose sparse matrix representations. The
CSR format stores a variable number of non-zeros per row
without wasting memory space to store zeros. Fig. 1 (b)
illustrates the CSR representation of an example matrix. CSR
explicitly stores column indices and non-zero values in arrays
col_idx and values. The row_ptr array stores the pointers to the
first non-zero of each row.

The scalar CSR kernel [7] assigns one thread to each matrix
row. Each thread reads the elements of its row sequentially.
The problems of the scalar CSR kernd are (1) Threads within a
warp access the arrays, col_idx and values, with uncoalesced
memory accesses. That leads to low memory bandwidth
efficiency. (2) When the scalar kernel is applied to a matrix
with a highly variable number of non-zeros per row, many
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threads within a warp may stay idle while the tbseavith
longer rows continue running.

The vector kernel [7] assigns one warp to processh e

matrix row. The vector kernel accesses indices dath
contiguously. Therefore, it overcomes the firstidehcy of
the scalar approach. The problems of the vectarekare (1)
It requires an additional intra-warp parallel refitut to sum
per-thread results together. (2) Efficient exequtdd the vector
kernel demands that matrix rows contain a number
non-zeros greater than the warp size, so the peafuce of the
vector kernel is sensitive to matrix row size.

B. COO

The coordinate (COO) format is another general-psep
sparse matrix representation. As shown in Fig., 1@ three

arraysvalues, row_idx andcol_idx store the values, row indices

and column indices, respectively, of the non-zeros.

COO kernel [7] assigns one thread to each non-zerd,
then performs a segmented reduction operation o \&lues
across threads. The primary advantage of the CQ@ekés
that its performance is insensitive to irregularity the data
structure. Therefore, COO method offers robustqguernce
across a wide variety of sparse matrices. One drellof
COO format is that it needs more storage spacetdre s
row_idx array than CSR format.

C.ELL

The ELL format is well-suited to GPUs. As shownFig.
1(d), an M-by-N sparse matrix with at most K nomezeper
row is stored as a denser M-by-Kalues array and a
corresponding M-by-keol_idx array. All rows with less than K
non-zeros are zero-padded to length K.

The two ELL arrays are stored in column-major orded
zero-padded for alignment. ELL is most efficient emhthe
maximum number of non-zeros per row does not sotialiy
differ from the average. Otherwise, more zerospaigded, the
memory space and bandwidth are not used efficientty the
performance degrades.

D.HYB

Hybrid (HYB, Fig. 1(e)) format [7] overcomes theadiback
of ELL. The purpose of HYB format is to store thgital
number of non-zeros per row in the ELL format ahe t
remaining entries of the rows with more than theidsl
number of non-zeros in the COO format.

It is important to determine how to partition thegmal
matrix. Based on empirical results, the fully-oceap ELL
format is roughly three times faster than COO, pkeénen the
number of rows is approximately less than 4K. Saisit
profitable to add a K-th column to the ELL portiamen the
number of matrix rows with K (or more) non-zerosatsleast
max(4096, M/3), where M is the total number of nxatows.
The remaining non-zeros in the rows with more th@n
non-zeros are put into COO.

HYB is the fastest kernel in NVIDIA's SpMV libranhut
the HYB format needs to be improved further, whigh be
analyzed in section IV.
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Fig. 1 Storage formats for an example matrix.

Il. RELATED WORK

There are a lot of researches on optimizing SpMvtahbse
of its importance. Many optimizing methods on vaso
platforms have been proposed.

Eun-Jin Im [1] proposed two techniques, registercking
and cache blocking, to reuse the data in registats cache
respectively and reduce the traffic between on-chipd
off-chip memory. A performance model was createdhoose
the block size in the register blocking method. &iation of
basic SpMV in which a sparse matrix is multipliegdd set of
dense vectors is also considered. Vuduc [2] prapozse
improved heuristic for the tuning parameter of seagi
blocking optimization, developed performance bouifals a
specific matrix on a specific architecture and &utted
performance on single-core CPUs.

Williams [3] presented a performance model calledfine
Model to guide the performance auto-tuning for SpMW
multi-core platforms. Williams et al. [4] tested i8¢ kernels
with  many kinds of optimizing methods on five
multi-core/many-core platforms.

The research on GPU-based SpMV started in 2003[5].
Sengupta, et al. developed more generic approachies
parallel prefix/scan primitives [6], though this plementation
did not outperform CPU. Bell and Garland [7] propds
parallel algorithms for several storage formats GRPU
platform, including CSR, COO, ELL, HYB, DIA and PKT
HYB is the most closely related work to our resham which
the matrix is empirically partitioned into two piors, ELL and
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COO. Baskaran and Bordawekar [8] optimized SpMV with
four techniques on two GPU platforms. Ali Cevahir et a. [9]
optimized SpMV with the jagged diagonal format (JAD) on
GPUs. JAD is a more general format than DIA and ELL, but
JAD can ill guarantee coalesced memory access. But JAD
kernel demands that the matrix should be preprocessed.
ELLPACK-R[10] and Sliced ELLPACK][11] are two variants
of ELL, which were proposed to save the storage space and
reduce useless operations on zeros. Choi et a. [12] proposed
BELLPACK format and used the register blocking method on
GPUs. A mode-driven auto-tuning framework was aso
proposed. Ping Guo, et al. [13] tuned CUDA parameters like
BLOCK_SIZE, NUM_THREADS and WARP_SIZE for
SpMV on GPUs to achieve higher performance. Xintian Yang,
et a. [17] tried to use cache blocking method to optimize
SpMV on GPU.

There are also some researches on new storage formats for
sparse formatsin recent years[14, 15, 16, 19].

IV. FAST SPMV BASED ON HY B-R FORMAT

A. Observations: Problems of HYB Format
HYB format, which was introduced in section Il, may not

fully exploit the characteristics of some matrices. Two
observations below show the problems of HY B format.

TABLE|
NON-ZEROS RATIO IN HY B FORMAT (%)
Matrices COO ELL
1 0.3 99.7
2 0.0 100.0
3 17.2 82.8
4 189 81.1
5 0.0 100.0
6 4.0 96.0
7 0.6 99.4
8 0.0 100.0
9 99.1 0.9
10 18.7 81.3
11 21.8 78.2
12 6.9 93.1
13 35.8 64.2

Observation 1: A large number of non-zeros may be left in
the COO portion of the HY B format for some matrices. Table |
shows that non-zeros left in the COO portion account for more
than 17% of the whole matrix for 6 out of the 13 matrices when
the partition method in HY B format is used. As aresult, we can
conclude that the performance of the COO portion can be
improved further if we continue to partition the COO portion
into two parts, ELL and COO.

Observation 2: The partition method used in HYB may not
be the best choice. As mentioned in section Il D, the number
of columns in the ELL portion is K, which is determined
empiricaly. But there are some other choices for K, such as
average non-zeros per row.

B. HYB-R Format and HYB-R Kernel

In this section, we represent a new storage format for sparse
matrices, recursive hybrid (HY B-R) format. HYB-R format is
proposed based on observation 1 in section IV A to put as
many non-zeros as possible in the ELL portion. HY B-R kernel
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aims to fully exploit the advantage of ELL kernel on GPUs.
Experimental results show that HY B-R kernel can improve the
performance of HYB kernel further. HYB-R format and
HYB-R kernel are represented below separately.

1. HYB-R Format

There are one COO portion and one ELL portion in HYB
format, while there are one COO portion and more than one
ELL portions in HYB-R format (Fig. 3 (a)). So the number of
non-zeros in ELL format is usually larger for HYB-R format
than HY B format.

The process of creating HYB-R format is described in Fig.
2(b). The matrix isfirst partitioned into two parts, ELL portion
and COO portion. Then the COO portion is partitioned
recursively into ELL portion and COO portion until there are
few non-zeros left in COO portion or the number of rows left is
less than 4096.

L DS nxlx|x]x]x|x]x
2 | x S lxx|x]x|x]x
I 1x X|x Ilxlx|x]|x
4 |x x|x
5 X reorder 8 ==
6 x| x = 9 Ix|x
7 x 1 lx
8 | x xlx|x|x 1 1x
g | x 5 1%
| x 7 | x
ulxlx|x]x)x]lx]x 10 |x
12 | x 12 I x
a) Reorder the matrix
ELL €00 ELL  ELL €00
% x|x]x|x X|x]|x]|x X
X X[X]X X|xX]x|X
x % Xx|x|x
% X
X 3
X = = =000

E Il RS B - I Bl S e S e

I I S S B S S T S R

b) The process of creating HY B-R format.
Fig. 2 Rorder the matrix and create HY B-R format

After severa partitions, there are usually no non-zeros left
for many rows which should not be stored in the next ELL
portion to save the memory space. As a result, the matrix rows
are reordered in decreasing order of length before the process
of creating the HYB-R format if the matrix will be partitioned
at least twice. For example, only Row 11, 8 and 3 are stored in
the second EL L portion after reordering in Fig. 2 (@), but al the
rows should be stored in the second ELL portion if the matrix
rows are not reordered previously so that each matrix row
corresponds with the right element of vector y. The reorder
information of the matrix rows is recorded in a permutation
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array. After the HYB-R kernel finishes, vector y is reordered
according to the permutation array.

2. HYB-RKernel

The HYB-R kernel is divided into several ELL kernels and
one COO kernel, which are launched one by one. Fig. 3 (a)
shows the pseudo-code for HYB-R data structure, and Fig. 3
(b) shows the execution process of HY B-R kernel. The matrix
in HYB-R format and the vectors are first transferred to the
global memory, then the kernels are started one by one, and at
last the vector y is copied from the global memory to the host
memory. The number of threads in the ELL kernels becomes
smaller gradually because the number of matrix rows left
becomes smaller.

struct hyb-r_matrix{
el_matrix  €ll;
ell_matrix  dlI2;

COO0_matrix coo;

1

(a) HYB-R data structure

ELL kernell
ELL kernel2

CO(S Ikernel

(b) HYB-R kernel

Fig. 3HYB-R data structure and HY B-R kernel

C. Parameter Tuning

First, we should decide when to stop the partition process. In
other words, when the number of non-zeros in COO portion is
less than X% of the number of non-zeros in the whole matrix,
the process of partitioning the matrix should be stopped. In the
implementation, the partition processis stopped when X=0.5 or
the number of rows left is less than 4096, but X can be
carefully tuned to get better performance.

Second, as mentioned in observation 2 in section IV A, we
should decide how to choose the parameter K, which is used to
partition the matrix into ELL portion and COO portion.
Besides the method mentioned in Section II D (Method 1),
there are two other methods to determine the value of K as
follows.

1. K equals average non-zeros per row (Method 2). This is a
simple method but it can be effective when the numbers of
non-zeros per row do not highly vary across the matrix.

2. If the non-zeros account for more than 1/3 storage space of

ELL portion after the column is added to the ELL portion,
the column should be added (Method 3). Method 3
characterizes the non-zeros ratio in the ELL portion more
exactly than Method 1.

V. EXPERIMENTS SETUP

A. Introduction to NVIDIA CUDA

A NVIDIA GPU usudly consists of severa streaming
multiprocessors, and each streaming multiprocessors consists
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of eight streaming processors. There is a private loca memory
in the form of registers for each thread and a low-latency
on-chip memory caled the shared memory for a group of
threads. The main memory of a GPU is a high-bandwidth
DRAM shared by al threads. There are aso two types of
read-only memory caled constant memory and texture
memory both with on-chip cache.

NVIDIA's CUDA is a programming model designed for
NVIDIA GPUs. A CUDA program consists of a host program
running on the CPU, and a kernel program running on the
GPU. The host program transfers the data from CPU to GPU,
the kernel program processes that data, and then the host
program transfers the results from GPU to CPU. The kernel
program is partitioned into a grid of thread blocks, each
including a group of threads. A warp is a group of 32 threads,
and athread block may include several warps. The execution of
the threads follows a single instruction multiple threads (SIMT)
model. Threads within a block share the shared memory and
can synchronize via barriers. But there is no such
synchronization mechanism for threads in different thread
blocks.

There are many techniques to improve performance on
GPUs. We just list three of them and suggest the CUDA
Programming Guide [18] for more information. (1) Maximize
the bandwidth of globa memory with aligned and coalesced
accesses. (2) Reuse datain on-chip memories, such as registers,
shared memory, texture cache and constant cache. (3) Reduce
thread divergence.

TABLEII
PLATFORMS USED IN THE EXPERIMENTS
GPU GeForce 9800 GX2 GeForce GTX 295
CUDA Cores 256 (128 per GPU) 480 ( 240 per GPU )
GPU clock 1500 MHz 1242 MHz
Memory Clock 1000MHz 999 MHz
Memory capacity 1GB (512MB per GPU) 1792MB (896MB per
GPU )
Memory Bandwidth | 128 (64 per GPU) GB/sec 223.8 GB/sec
Compute Capability 11 13

B. Experiment Platform

The experiments in this paper were run on the two systems
listed in Table I1. There are two GPUs on a single card for both
GPU platforms, but only one GPU was used in the
experiments.

C. Sparse Matrices in the Experiments

The sparse matrices used in the experiments are listed in
Table 11, which are aso used in prior work [7]. Every matrix
in the table is given a seria number so that we can use the
number to represent the matrix. The column Rows and
Columns shows the number of rows and columns for each
matrix. The column NNZ represents the total number of
non-zeros for each matrix. The column NNZ/R represents the
number of non-zeros per row on average.
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TABLE Il
MATRICESUSEDIN THE EXPERIMENTS
No. Matrix Name Rows Column: NNz NNZ/R
1 FEM/Cantileve 62,45: 62,45 4,007,38 64.1
2 FEM/Sphere 83,33« 83,33« 6,010,48 72.1
3 FEM/Acceleratc | 121,19: 121,19: 2,624,33 21.€
4 Economic 206,50( 206,50( 1,273,38! 6.1
5 Epidemiolog 525,82} 525,82! 2,100,22! 3.¢
6 Proteir 36,417 36,410 4,344,76! 119.C
7 Wind Tunne 217,91¢ 217,91¢ 11,634,42 53.2
8 QCD 49,15: 49,15: 1,916,92 39.C
9 LP 4,28¢ 1,092,611 | 11,279,74 | 2632.¢
1C FEM/Harbo 46,83t 46,83¢ 2,374,00 50.€
11 Circuit 170,99¢ 170,99¢ 958,93¢ 5.€
12 FEM/Shig 140,87- 140,87- 7,813,40 55.4
13 Webbas 1,000,00' | 1,000,00: | 3,105,53 3.1

VI. EXPERIMENTAL RESULTSAND ANALYSES

The experiments were carried out with the matried the
platforms which were introduced in section IIl.
TABLE IV

NON-ZEROSRATIO IN HYB-R FORMAT AFTER THE
MATRIX IS PARTITIONED TWICE

Matrices ELL1 ELL2 COO
1 99.7 0.0 0.3
2 100.0 0.0 0.0
3 82.8 15.2 2.0
4 81.1 9.7 9.2
5 100.0 0.0 0.0
6 96.0 3.2 0.8
7 99.4 0.5 0.1
8 100.0 0.0 0.0
9 0.9 0.0 99.1
10 81.3 16.2 25
11 78.2 121 9.7
12 93.1 5.9 1.0
13 64.2 8.2 27.6

In the experiments, the matrices were only partéd@twice
(Table
performance will be better for some matrices ifthegtrices are
partitioned three or more times, because therestdle lot of
non-zeros left in COO portion for some matriceserativo
partitions, such as Matrix 4, 11 and 13, all witbre than 9%
of the non-zeros in the COO portion.

As shown in Table | and IV, non-zeros of COO partare
less than 0.5% of non-zeros in the whole matrixMatrix 1, 2,
5 and 8, which are partitioned only one time, seréhare no
non-zeros in ELL2 portion in Table IV for these ns.
There are only 4284 rows in Matrix 9, and less th@86 rows
are left after the first partition, so there isoate® non-zero in its
ELL2 portion. As a result, the HYB-R kernel is apxmately
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IV) for simplicity. But we can conclude that

as fast as the HYB kernel for the above five magi¢Fig. 4
and 5).

3.5
3
2
g 2.5
G HHYB
2 -
HHYB-R
1.5 -
1234567 8 910111213
Matrices
Fig. 4 Single precision performance without cache o
GeForce 9800 GX2
15
13
o 11 -~
S 9 -
c 7 - m HYB_TEX
5 - m HYB-R_TEX
3 -

12345678 910111213

Matrices

Fig. 5 Single precision performance with cache on
GeForce 9800 GX2.

Vector x can be put in texture memory so that some
elements of x will be reused in texture cache bfjedint
threads. Fig. 4 shows the single precision perfagaavithout
cache(x was placed in global memory) on GeForc® 98K2,
and Fig. 5 shows the single precision performaritie @ache(x
was placed in texture memory) on GeForce 9800 (B<h
HYB kernel and HYB-R kernel can achieve higher
performance with cache than without cache. From 4&nd 5,
we can find that the HYB-R kernel is faster thae tHYB
kernel for all the eight matrices which are pastigd twice. If
there are enough non-zeros and enough rows in G,
the performance can always be further improved togtheer
partition to the COO portion.

Table V shows the speedup of HYB-R kernel over HYB
kernel on GeForce 9800 GX2. HYB-R kernel outperfedm
HYB kernel obviously both with cache and withoutlee. In
HYB-R kernel with cache, 5 out of the 13 matricetiaved
more than 13% speedup over the HYB kernel. Forhtbst
case, Matrix 12, performance was improved by 14\6i#h
cache. The average speedups of the eight matribe are
partitioned twice are 3.9% without cache and 10wi%6 cache
respectively.

More performance improvement can be achieved vetihe
than without cache. The possible reason is that2Ekérnel
can reuse vector x in texture cache better thanlEkérnel.
ELL2 kernel only accesses a part of the vector o BhL1
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kernel may access the whole vector x, while théutexcache

) L 13.5
cannot hold the whole vector x. From this point vaéw,
carefully tuning the parameter K may also lead dtidy reuse 11.5
of vector x. ¥ 95
TABLE V )
PERFORMANCEIMPROVEMENTOF HYB-R OVER HY B (%) 6 75 - = HYB
ON GEFORCE9800GX2
Matrices without cache with cache, 5.5 A1 mHYB-R
1 0 0 35 |
2 0 0 :
3 5.7 7.7 1234567 8910111213
4 6.0 13.8
5 0 0 Matrices
6 12 4.0
7 0.4 25 : : - .
8 o 5 Fig. 8 Single precision performance without cache o
9 0 0 GeForce GTX 295
10 0.9 14.4
11 8.7 13.3
12 20 13.0 23
13 5.9 14.5
Average Speeduf 39 10.4 18 -
4
9 13 -

Fig. 6 shows the bandwidth of HYB kernel and HYB-F & B HYB_TEX
kernel without cache on GeForce 9800 GX2, and Figith 8 - w HYBR TEX
cache. More bandwidth improvement of HYB-R over Hydh -
also be achieved with cache than without cachéagishe case 3 -
of single precision performance. 1234567 8910111213

24 Matrices
22
20 Figure 9 Single precision performance with cache on

L 18 GeForce GTX 295

8 16 -
14 - mHYB Fig. 8 shows the single precision performance witho
12 | = HYB-R cache(x in global memory) on GeForce GTX 295. Bighows
10 - the single precision performance with cache(x intuie

memory) on GeForce GTX 295. The HYB-R kernel soas

1234567 8910111213 fast as the HYB kernel for Matrix 1,2,5,8 and 9hihe same

Matrices reason as on GeForce 9800 GX2. The performancéef t
HYB-R kernel is higher than the HYB kernel withousing
Fig. 6 Bandwidth without cache on GeForce 9800 GX2 texture cache for all the other eight matricess Isurprising

that the HYB-R kernel is slower than the HYB kerrief
Matrix 3 and 7 with texture cache. The possiblesoeais that

80 one more ELL kernel is launched in HYB-R kernelrtha
70 1 HYB kernel, and the cost of launching one more Hdedrnel
o 60 7 can lead to lower performance on GeForce GTX 295.
g 50 - TABLE VI
PERFORMANCEIMPROVEMENT OFHYB-R OVERHYB (%
40 - W HYB_TEX ON GEFORCEGTX 295 0
30 -+ ® HYB-R_TEX Matrices without cache with cache
20 - 1 0 0
2 0 0
1234567 8 9510111213 3 0.5 -2.5
4 5.5 3.7
Matrices 5 0 0
6 0.9 3.1
) . ) 7 0.2 2.6
Fig. 7 Bandwidth with cache on GeForce 9800 GX2 3 o )
9 0 0
10 0.4 75
11 13.5 45
12 12.7 16.5
13 6.0 9.2
Average Speeduq 5.0 4.9
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Table VI shows the speedup of HYB-R kernel over HYB
kernel on GeForce GTX 295. For the best case, Matrix 12,
performance was improved by 16.5% with cache. The average
speedup of the eight matrices is 5.0% without cache, and 4.9%
with cache. Minus signs are used for Matrix 3 and 7 because of
the lower performance. Combining Table V with Table VI, we
can find that higher speedup was achieved without cache on
GeForce GTX 295, 5.0% versus 3.9%, while higher speedup is
achieved with cache on GeForce 9800 GX2, 10.4% versus
4.9%.

Fig. 10 shows the bandwidth of HYB kerne and HYB-R
kernel without cache on GeForce GTX 295, and Fig. 11 with
cache.

90
80
70 A
60 -
50 -
40 -

GB/s

mHYB

m HYB-R

1234567 8 910111213

Matrices

Fig. 10 Bandwidth without cache on GeForce GTX 295

130
110 -
90 -
70 -
50 -
30 -

GB/s

m HYB_TEX

B HYB-R_TEX

1234567 8 910111213

Matrices

Fig. 11 Bandwidth with cache on GeForce GTX 295

Table VII shows the parameter tuning results of two
methods and the best vaue of K which was found
exhaustively. In this experiment, each matrix was partitioned
only once, and only the GeForce 9800 GX 2 platform was used.
Method 1 is the method used in HYB format. Method 2 is the
average non-zeros per row method. Because average non-zeros
per row is not a decimal, the value of K in Method 2 includes a
smaller integer and a greater integer. Each entry of the table
includes the single precision performance with cache and the
value of K (in parenthesis). The best performances of the three
methods are shown in red. If the best performance was
achieved by Method 1 or 2, the content of Best column would
not be in red.

International Scholarly and Scientific Research & Innovation 6(1) 2012

TABLEVII
PERFORMANCE OF TUNING K - GFLOPS(K)
Matrices | Method 1 Method 2 Best

1 975 (75 7.97(64) 8.15(65) | 975 (75
2 1197 (81) 8.59(72) 8.47(73) 11.97 (81
3 415 (23 3.15(21) 3.99(22) 415  (23)
4 391 (V) 3.77(6) 3.91(7) 431 (9
5 952 (4 3.02(3) 9.51(4) 952 (4
6 8.60 (138) 8.00(119) 841(120) | 8.80 (140)
7 1227 (54) | 10.43(53) 1227(54) | 1227 (54)
8 12.08 (39) 12.08(39) 11.93(40) | 12.08 (39)
9 312 (23) | 1.39(2632) | 1.39(2633) | 312 (23
10 6.24  (55) 5.92(50) 6.07(51) 6.24 (55
11 345 (5 3.46(5) 3.76(6) 3.76  (6)
12 993 (54 9.92(55) 9.61(56) 993 (54
13 34 (2 3.61(3) 3.69(4) 369 (4

It can be found that neither method is optimal, 9 matrices
using Method 1 get best performances, 2 matrices using
Method 2. Method 1 seems better than Method 2 for the 13
matrices. But the value of K dtill needs to be better tuned to
achieve higher performance, which is mainly determined by
the characteristics of the specific matrix and the GPU
architecture. Maybe the Method 3 represented in section IV C
is abetter choice, which is not included in the experiment.

VI1. CONCLUSIONS AND FUTURE WORK

In this paper, a novel method is proposed to improve the
performance of SpMV on GPUs. A new storage format called
HYB-R is proposed to fully exploit GPU architecture.
Experiments were carried out with thirteen matrices on two
GPU platforms. Experimenta results show that our method can
get better performance than the fastest kerne (HYB) in
NVIDIA’s SpMV library. We also tried to tune the parameters
on how to partition the matrix into ELL and COO, and find that
the partition method used in HYB format is better than the
non-zeros per row method for the 9 out of 13 matrices.

However, the partition method used in HYB format is not
perfect. So we will test other methods to partition the matrix
into ELL and COO for the HYB-R format, considering the best
reuse of vector x in texture cache. And we will aso try cache
blocking method with different storage formats to represent
sub-blocks on GPUs in future.
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