
 

 

  
Abstract—The paper discusses the mathematics of pattern 

indexing and its applications to recognition of visual patterns that are 
found in video clips. It is shown that (a) pattern indexes can be 
represented by collections of inverted patterns, (b) solutions to 
pattern classification problems can be found as intersections and 
histograms of inverted patterns and, thus, matching of original 
patterns avoided. 
 

Keywords—Artificial neural cortex, computational biology, data 
mining, pattern recognition.  

I. INTRODUCTION 
HE theory of pattern recognition is featured by two 
paradigms that originated in late 1950s. The first 

paradigm can be described as probabilistic or discriminant 
functions-based approach and the second paradigm - as 
addressing-based approach that led to development of 
weightless neural networks. The first paradigm also relies on   
matching-based techniques that attempt to classify patterns 
either by looking for maximal values of pre-designed  
decision functions (or outputs of neural networks) or by 
directly comparing unknown patterns to a number of pre-
stored prototype patterns. The problem with matching-based 
approaches is that computational complexity at least linearly 
increases with the number of learned patterns. Hence, as the 
pattern database size grows, so does the price of hardware, or 
the recognition process unacceptably slows down.  
   This paper discusses an indexing-based approach to pattern 
recognition that complies with the second paradigm. For this 
approach, the N-dimensional feature space is no longer used. 
Instead, it is replaced by a pattern index or a neural cortex that 
was modeled after the biological grey matter. A proper design 
of the pattern index implies that the amount of computations 
remains flat even if the pattern database size keeps on 
growing. Often a hierarchy of pattern indexes is used, where a 
common fundamental algorithm repeats itself on all levels.  
   The indexing approach to pattern recognition uses a 
definition of inverse sets, which the definition of a pattern 
index is based on. The input to the pattern index is an 
unknown pattern and the output is the class that the unknown 
pattern belongs to. If there is no output then the input is a new, 
previously unseen pattern. In this case a new class name is 
generated, which is assigned to the input pattern. Next, this 
pattern is registered in the pattern index. 
   The paper discusses the mathematics of indexing structures 
that emerged as a mathematical assessment of data delivered 
for the past century by neuroscience. We have speculated ([1], 
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[2]) that the brain’s cortex is a hierarchical biological index of 
real-world patterns. This viewpoint may explain the speed the 
brain almost instantaneously recognizes the visual, auditory, 
olfactory, tactile and taste patterns, despite the fact that 
maximum firing rate of neurons does not exceed 400 Hz, 
which is by 7 orders of magnitude slower than GHz 
frequencies of the computers. Indeed, if the brain’s cortex is a 
pattern index then an efficient addressing system creates in a 
few steps a pointer to the result without resorting to lengthy 
calculations and massive amount of matches.  
   As an application example the paper discusses a real-time 
recognition of arbitrary gestures performed by one or two 
hands that are recorded by web-cameras. 

II.  DEFINITION OF INVERSE SETS 
For a collection of finite sets {f}n, n ∈ N, a collection of 

inverse sets {n}f ,  f∈ F, was defined in [3] as  
 

{ } { : { } , }f nn n f f n N= ∈ ∈ .            (1) 

This inverse collection is called a pattern index ([3]). Here N 

is the set of pattern names and the pattern index domain F is 

the union of elements of the original finite sets. 

 
{ } ,n

n

F f n N= ∈U                                    

We are referring to elements f as pattern features and to 
subscripts n∈ N as pattern names. 

 
A. Example 1 
 
For a collection of sets 

z = {a, c},   y = {b, c, d}, u = {a, b}, x = {a, d}, v = {d} 
the collection of inverse sets, in accordance with (1),  is as 
follows.                                            
a = {z, u, x},   b = {y, u},   c = {y, z},   d = {y, x, v}.                                   

These two collections can be depicted as the two following 
“fractions”. 

 
The columns of the left-hand “fraction” contain the 

elements of the original sets, whereas the columns of the right-
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hand “fraction” contain the names of the original sets. The 
denominator of the left-hand “fraction” contains the names of 
the original sets, whereas the denominator of the right-hand 
“fraction” contains the names of the inverse sets. The most left 
column of the left-hand “fraction” comprises the first original 
set. The next adjacent column comprises the elements of the 
second set, and so on. Each column of the right-hand 
“fraction” comprises the elements of the corresponding 
inverse set. Clearly, the right-hand “fraction” represents the 
index of the original sets. Indeed, the first column of this 
fraction shows that the element a belongs to the sets z, u, and 
x. The second column shows that the element b belongs to the 
sets y and u and so on. 

B. Example 2 

Fig. 1 shows a collection of “red” circles that are denoted 
by an “R”,  “green” circles denoted by an “G”, and “yellow 
circles” denoted by an “Y”. The horizontal coordinates of each 
circle center were normalized as 1, 2, 3, 4, and 5. The circles 
under the dividing horizontal line show inverse sets, that is, 
the colors associated with each center. The number of inverse 
sets equals to 5 since the circles above the dividing line are 
spread across 5 horizontal coordinates. The inverse sets are as 
follows: {R}1, {R, G}2, {R, G, B}3, {G, B}4 и {B}5. Here the 
subscripts represent the names (horizontal coordinates) of 
inverse sets, whose colors under the dividing line are denoted 
as “R” for red, “Y” for yellow, “W” for white, “C” for cyan 
and, “B” for blue according to the superposition of colored 
circles above the divider. 

 
Fig. 1 Superposition of colors 

A halftone color index can be defined as well. For instance, 
an image pixel can be associated with the colors {5R, 10G, 
35B}, where the factors 5, 10, and 35 represent the brightness 
of the corresponding colors. In this respect the computer 
screen is an example of an indexing device. 

III. SET TRANSFORM 
The expression (1) defines a transform I that converts a 

collection of sets into inverse sets.  Let F be a finite set, 
whereas X = {{f}n, n∈ N} and  Y = {{g}m, m∈ M} are the two 
different collections of subsets from F. We denote by X-1 and 
Y-1 the two collections of inverse sets, which are built in 
accordance with the definition of inverse sets (1).  

A. Statement 1 
Any two different collections X and Y of subsets from a 

finite set F have two different inverse collections X-1 и Y-1. 

This theorem implies that the transform (1) is a one-to-one 
mapping, that is, for each collection of sets X and Y there 
exists one and only one collection of inverse sets X-1 и Y-1,  
such that if  X ≠ Y then  X-1 ≠ Y-1 , or I(X) ≠  I(Y). 

B. Proof 
The following proof is based on the representation of a 

pattern index with a binary matrix, whose columns’ names are 
the names of the features f, and whose rows’ names are the 
pattern names n. The matrix cell (f, n) contains 1 if and only if 
the feature f belongs to the pattern n. Otherwise this cell 
contains 0. A general case of such binary matrix is shown in 
Fig. 2. 
 

                                (2) 
 

Fig. 2 Binary matrix representing a pattern index 
 

Here, the element  emn  is equal to 1 if and only if the feature 
fn  belongs to the set  m. Otherwise, emn  is set to 0. 

While the matrix (2) represent original sets {f}n, n∈ N, the 
columns of matrix (2) represent the inverse sets {n}f, f∈ F. 

C. Example 3 

Let us consider the collection of two following sets.  

A = {a, b}   и   B = {b, c}.                   (3) 
Here the lower-case characters represent the elements of the 
sets and upper-case characters represent these sets’ names. We 
can represent these sets with the following binary matrix. 

 

Here, the 1s in the first row of the matrix M1 correspond to 
the elements a and b of the set A, whereas the 0 in the row 1 
indicates that the element  c does not belong to the set A. 
Analogously, the 0 in the second row indicates that the 
element  a does not belong to the set B. The width of the 
matrix equals 3 since the union {a, b, c} of the sets A and B 
contains only 3 elements. Applying the definition (1) to the 
collection (3) we get the following inverse sets: a ={A}, 
b={A, B}, and c={B}, which we represent with the binary 
matrix M2 , that is, 
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Clearly, the matrix M2 is a transpose of the matrix M1, that 
is,  M2 = M1

T . While the columns of M2 represent the inverse 
sets {n}f, f∈ F, the rows of M1 represent the original sets {f}n, 
n∈ N. Since this is true in a general case of N-dimensional 
matrix, the transform I, which is defined by expression (1), 
amounts to interchanging the rows and columns of the matrix 
(2). Obviously, it would be impossible to arrive at the same 
matrix by subjecting two different matrices to a transpose 
operation. Hence, the transform I is a one-to-one mapping.   

Note 1. The above considered binary matrices (index 
matrices) constitute a special case of matrices that are treated 
in the Formal Concept Analysis (FCA). This is because the 
index matrices, unlike FCA-matrices, feature unique rows. 
Indeed, if we suppose that an index matrix can have two or 
more identical rows then the implication would be that the 
collection of original sets comprises two or more identical 
elements (sets). But this contradicts to fundamental definition 
of a set. 

Note 2. Representation of collections of sets by index 
matrices is not efficient from a computational point of view as 
the 1s of index matrices are sparsely distributed. However, 
representation of sets by index matrices can prove to be useful 
when it comes to set comparison operations, which are needed 
in case a distance between sets needs to be calculated. This 
issue will be considered in Section VI. 

IV. NEAREST NEIGHBOR APPROACH TO PATTERN 
RECOGNITION 

A popular in practice, nonlinear classifier makes use of a 
nearest neighbor (NN) rule. According to this rule, at the 
reception of an unknown feature vector, its distance from all 
training vectors (of the various classes) is computed. Next, the 
unknown vector is assigned to the class of its nearest 
neighbor.   

If the number of training vectors is N and the vector length 
is M then the amount of computations is on the order of 
O(NM) and it keeps on increasing linearly with N.  This paper 
discusses a way of keeping the amount of computations flat 
even if the number of training vectors grows. Since we treat 
the inputs as dimension-less sets, we have to rephrase the NN-
problem in terms of sets as the following search problem. 

A. Set Search Problem 
Let Fn, n ∈ N, be a finite collection of finite sets. For a 

given finite set U find the set Fm, such that 

( , ) min ( , )m nn N
D F U D F U

∈
=        (4)  

Here D (Fm ,U) is a distance between sets Fm and U. 

   If the unknown input pattern U is identical to one of 
prototype patterns Fm, m∈N, then the right-hand side of the 
equation (4) is equal to 0 

( , ) 0mD F U =           (5) 

B. Statement 2 

A necessary condition for a pattern, whose name is m, to be 
a solution to (5) is that the name m belongs to the intersection 
of inverse sets  

{ }

{ } f
f u

m n
∈

∈ I          (6) 

Here {n}f, f∈ F, are the inverse prototype sets (patterns) and 

{ }n
n N

f f
∈

= U . 

C. Proof 

Let inverse sets {n}f,  f∈{u}, and only these sets contain the 
name m that is a solution to (5). Then the name m belongs to 
the intersection (6). If the name m does not belong to the 
intersection (6) then m does not belong to all inverse sets 
{n}f , f∈ U, and Fm ≠ U.   Hence, the necessary condition for 
m to be a solution to (12) is that m belongs to the intersection 
(6). However, (6) is not a sufficient condition. Indeed, should 
there exist a superset W such that U ⊂ W then the name w of 
the set W also belongs to the intersection (6).  
 

    D. Pattern Histogram 
    If the intersection on the right-hand side of (6) is empty 
then we are back to the problem of minimizing (4). However, 
even if (6) is empty, a full search can be avoided by using a 
pattern histogram. The pattern histogram HU(n) is a histogram 
of names that are contained in inverse sets {n}f, f∈U. The 
following statement is true. 
 

 E. Statement 3  
The height of the nth sample of the pattern histogram is 

equal to the number of times the name n occurs in inverse sets 
{n}f ,  f∈U. 

Indeed. Since every inverse set contains no more that one 
copy of each name, the total number of copies of the name n 
in inverse sets {n}f ,  f∈U, does not exceed the size of the set 
U: HU(n)≤ |U|. If the name n is found only in a strict subset V 
⊂ U then HU(n) < |U|. 
 

F. Computational Aspects 
Statement 3 constitutes a basis of an efficient search 

algorithm that delivers a solution to the set search problem (4) 
by calculating HU(n)-histogram. The histogram is calculated 
by accessing only the inverse sets {n}f ,  f∈U . The rest of the 
inverse sets, that is, the sets with the addresses F\U are 
ignored. As a result, only a small subset of histogram samples 
is calculated. The dependence of the histogram on the input 
pattern U is marked by way of using a histogram’s subscript 
U: HU(n). The solution m to (4) is obtained as 
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: ( ) max ( )U Un N
m H m H n

∈
=            (7) 

 
HU(n)-based search algorithm is computationally efficient if 
the following two conditions are satisfied. 
  
(a) |U| << N  (size |U| of the pattern U is much less than the 
total number N of prototype patterns). 
 
(b) |{n}f| ≈ |{f}n|  (average size of inverse patterns (sets) is 
roughly equal to the average size of prototype patterns (sets).  
 

If condition (a) and (b) hold then the search amounts to 
about |U| * |{n}f| arithmetical operations that are needed to 
calculate the histogram plus |U| * |{n}f| operation that are 
needed to find the histogram’s maximum. This amount of 
computations is much less than |N| * |{f}n|, which is the 
number of operations that are needed in case a full search is 
employed, that is, an unknown pattern is matched to all 
prototype patterns. 

Note that the condition (a) is always met in applications 
with large numbers of prototypes and the condition (b) can be 
satisfied by feature aggregation. For instance, it can be shown 
that by aggregating x and y features as x + y* L, where L is the 
dynamic range of original features, the value of |{n}f| 
decreases, on average, up to |{n}f| / L.  If the features x, y и z 
are aggregated as x+ y* L+ z* L2 then the value of |{n}f| will 
be, on average, |{n}f| / L2 etc. 

By using a normalized histogram HU(n) / |U| the distance 
D(Fm,U) between unknown and prototype patterns can be 
reduced to [0, 1] interval, where 0 stands for pattern identity 
and 1 – for the absence of common elements between Fm- and 
U- patterns.                                                                                                                  

In practical applications a recognition threshold T < 1 is 
used, such that if D (Fn, U) < T then the pattern Fn is 
considered to be a candidate to quality as a nearest neighbor. 
The final decision is made after substituting the candidates 
into (4) and selecting a minimum distance candidate. 

V.  RECOGNITION OF VIDEO CLIPS 
This section deals with recognition of video clips scenarios. 

For instance, the videos can show flying birds, dancing pairs, 
hand gestures, etc. Here we focus on arbitrary hand gestures. 
For example, hands can orbit an imaginary ball, change their 
shape and show a different number of fingers. The system 
comprises a preprocessing module that analyses frame 
sequences delivered by a 2D-web-camera and extracts the 
contour of moving objects. For contour extraction two 
successive frames are superimposed and a difference image is 
calculated, which is represented by an unordered list of pixel 
coordinates. An (x, y)-pixel qualifies for the list if its red 
component brightness frame difference exceeds a threshold. 
Although a 3D-camera would provide a better performance, 
the chosen 2D-inverse sets-based approach still proved to be 
applicable even in case of fuzzy and broken contours.  

The system uses three pattern indexes. First level pattern 
index recognizes local features of hand contours. The local 
features are obtained from the unordered difference pixel list 

in the following way. The center of an S x S-window (for 
instance, S = 16) is placed in turn at a number of selected 
contour pixel, such that the contour is covered at a chosen 
step. 
 

 
Fig. 3 Window frame against the contour 

 
The positions of pixels along the window frame are 

sequentially numbered from 0 to 4*S-1. In Fig. 3 the 
intersections of the window frame and the contour are marked 
with two circles. The 1s in the binary sequence show the 
positions of intersections in terms of frame pixel numbers. For 
instance, starting the count from the upper-left corner we may 
get the following sequence 000000110000000000101000000, 
which represents one local feature of the given contour that 
comprises two parts shown with fat curves. 
    The first level index is described with the index pair {p}f, 
{f}p, where f is the local feature name and p is the position of 
1-valued bit in this feature. The positions p of 1-valued bits 
are determined by the intersections. An example of two 
inverse sets, that is, the pattern index, which contains the 
copies of two names, is shown below. 
  
 2                      2                    2 
 11   2           1  1           1  2   1 
_________________________ 
0110000000101000000000001          (1st feature) 
0100100000001000000001001          (2nd feature) 
012345…                                            (coordinates of columns) 
 

The numbers above the dividing line represent the features’ 
names in the corresponding columns {f}p, whose addresses are 
determined by the positions of 1s in binary representations of 
local features. When an unknown feature uf arrives, the 
columns {f}u are accessed, so that the number of feature name 
occurrences is calculated. As a result a histogram Huf (f) is 
created. The values of the histogram subscripts f, where Huf (f) 
exceeds a recognition threshold Tf,, are used as names of 
short-listed candidate features, which we denote as CF. 
Finally, candidate features CF are in turn compared to the 
unknown input uf with the Soft Hamming distance DSH (f, uf) 
(distance measure (9), Section VI) in order to minimize the 
expression  
 
  DSH (f, uf) → min 
               f∈CF 
 

The unknown local feature uf is assigned the name of the 
winning prototype feature. However, if the candidate set is 
empty then the unknown feature is considered to be a new one 
and is assigned a name by incrementing the value of the last 
issued name by 1 because all names are integers. For the 
above discussed two features example the value of the name 
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would be 3. Next, the copies of this name are written in the 
columns of the local feature index {f}p. The number of copies 
equals the number of 1s in the binary representation of the 
new local feature. The addresses of the columns that are to be 
updated are determined by the positions of 1s in the binary 
representation of this feature. 

The number of feature classes depends on the feature 
recognition threshold Tf.  If Tf  = 1 then there exist only one 
feature class. In the other extreme case at Tf  = 0, the number 
of classes is equal to the number of different features, that is, 
any tiny variation of the feature causes the registration of a 
new feature class. For the given hand gestures recognition 
application it was experimentally shown that at Tf  = 0.5 the 
number of registered feature classes amounts to 29. 

The same indexing algorithm repeats itself on the levels 2 
and 3. On the 2nd level the index pair {f}c, {c}f is created, 
where c is the name of a hand(s) contour. Coordinates of the 
contours’ index {c}f are the names of local features that 
represent the contour c. If the local feature f is found more 
than one time in a contour c then the number of repeats is 
ignored. Next, the histogram Huc(c) is created, where uc stands 
for the unknown contour, and the contour recognition 
threshold Tc is set. Using Tc candidate contours CC are 
selected. Finally, the set distance (distance measure (11), 
Section VI) 
 
  DT(c, uc) → min 
               c∈CC 
 
is minimized and the winning contour obtained. For this 
application it was experimentally shown that the number of 
contour classes is 99 at Tc = 0.4. 

On the 3rd level each gesture g is described by a sequence of 
contours {c} and approximately represented by an unordered 
set {s} (2nd order alphabet, Section VI). Hence, the index pair 
{s}g, {g}s is created, where g is the name of a gesture. 
Coordinates of the gesture index {g}s are the names of the 
characters of  the 2nd order alphabet. When an unknown 
gesture ug arrives, the columns {g}s and the number of 
gesture name occurrences are calculated. Once the gesture 
histogram Hug(g) was created, where ug stands for unknown 
gesture, and candidate gestures CG short-listed the weighted 
set distance  (distance measure (12), Section VI). 
 
  DT(g, ug) → min 
                g∈C 
 
is minimized and the winning gesture obtained. 

External (given) gesture classes are fixed before the 
learning/recognition process starts. The number of external 
classes is that of the number of gestures to be learned. 
Normally, the system automatically creates on all levels sets 
of internal classes, whose number may be greater then the 
number of external classes. As a result, a correspondence 
function COR needs to be introduced: external class = COR 
(internal class). 

Three video clips (3 different gestures) were recorded that 
are shown on Fig. 1-6. Each clip contains from 400 to 600 

frames. At 20 frames per second rate the duration of each clip 
is about 25 seconds. Because of the limited page size each 
picture shows only a few fragments of each gesture. Each clip 
comprises 6 repeats of the same gesture. The repeats are 
separates by 1 to 2 seconds intervals. Since a human can not 
exactly reproduce his/her gestures, the first 3 gestures were 
used for training and the remaining once – for testing the 
quality of the recognition process. It was found that the 
system was capable to correctly identify the 3 remaining 
gesture samples. The following recognition thresholds were 
used: Tf = 0.5, Tc = 0.4, Tg =0.5. As a result, 29, 99, and 17 
internal classes were automatically created on the levels 1, 2, 
and 3, correspondingly.  
 

 
 
Fig. 4 Gesture 1: two rows of selected samples of the changing hand 

shape (from left to right) 
 

 
Fig. 5 Gesture 2: two rows of selected samples of the changing hand 

shape (from left to right) 

 
Fig. 6 Gesture 3: two rows of selected samples of the changing hand 

shape (from left to right) 
 

VI. DISTANCE MEASURES 
A. Representation of Sets with Binary Sequences 
A collection of sets can be represented with binary 

sequences. For instance, the sets {a, b, z} and {b, r} can be 
represented with the sequences 1101 and 0110. 
 

B. Soft Hamming Distance 
This distance measure can be applied, for instance, to 

collections of discrete dots on an axis. Below are given 3 
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binary sequences, whose 1-valued bits represent 3 collections 
of dots’ positions on an integer axis. 
 
A = 1000110000100100001 
B = 0100001001000010010 
C = 1000010000100100001, 
 

If we make use of Hamming distance 
 

( , ) ( )n nH
n

A B a XORbD = ∑         (8) 

then DH (A, B) = 11 and DH (A, C) = 1. However, the 
distribution patterns of 1s in B and C are quite similar. This 
similarity can be accounted for with the following measure, 
which we refer to as a Soft Hamming distance.  
 

( , ) ( ( ))& n n kP
n

k
A B a XORbD −= ∑             (9) 

where |k| ≤ R,  n = 1, 2, …,  N  and R is a given surrounding 
region. For the above example, if R= 1 then DP (A, B) = 0 и 
DP(A, C) = 0. It means that a shift of dots within the 
surrounding region does not affect the positional distance. 
 

C. Distance between Sets 
In accordance with the remark ((A), Section VI) the well-

known Tanimoto distance between sets 
 

( , ) | | / | |
T

A B A B A BD = Δ U                                      (10)                                              

 
where A Δ B = (A – B) ∪ (B - A) is the symmetrical difference 
between sets A and B, can be calculated as 
 

( , ) ( ) / ( )n nT
n

n n
n

A B a XORb a ORbD = ∑ ∑                (11)   

Note that the order of set characters is irrelevant since sets are 
unordered objects. 

In case of weighted sets, where weights are represented 
with non-negative integers an, bn, …, the distance (11) can be 
rewritten as 
 

,( , ) min( , ) / max( )
TW n n n n

n n

A B a b a bD = ∑ ∑               (12) 

D. Distance between Sequences 
The distance measures (8)-(12) cannot be applied to 

sequences, that is, to ordered sets. For instance, if the measure 
(10) is used to estimate the distance between the sequences 
abc and bac then we get a 0-distance as the symmetrical 
difference between sets {a, b, c} and {b, a, c} is an empty set. 
Normally, an Edit distance is used for matching of sequences.  

The Edit distance takes into account the number of 
deletions, insertions, and substitutions required to change one 
sequence into another. For the sake of consistency, we use an 
extended alphabet-based approach, which allows to 
approximating sequences with sets. The original alphabet P is 
replaced with an alphabet that comprises character pairs, 
character triplets, etc. For instance, for an original three 

character alphabet (a, b, c) the second order alphabet PP 
comprises the characters A = aa, B = ab, C = ac, D = ba, E = 
bb, F = bc, G = ca, H = cb, and I = cc. In this case the 
sequences A = abcb and B = bcab are represented as BFH  
and FGB, correspondingly. The 3rd order alphabet PPP 
comprises |P|3 characters and so on. The discussion as to how 
an nth order alphabet approximates the Edit distance is 
beyond the scope of this paper. Our experiments show that the 
3rd order alphabet allows distinguishing all words in English 
language by approximating the words with sets (in general 
case with weighted sets). For example, if we apply the 2nd 
order approximation to the sequences A and B then we find 
that these sequences are different even though the original sets 
{a, b, c, b } and {b, c, a, b} are identical. Indeed, the distance 
(10) amounts to DT (A, B) = |{B, F, H} Δ {F,G, B}|/ |{B, F, H} 
∪ {F,G, B}| = 2/4.  
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