Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

S. N. Deepa, G. Sugumaran

Abstract—This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Keywords—Higher Order Systems, Model Order Formulation, Modified Particle Swarm Optimization, PID controller, Pole-Zero Cancellation.

I. INTRODUCTION

PID controllers have been widely used in industries for various applications and it plays a vital role in automation. It has been a crucial problem to tune properly the gains of the PID controller because many industrial plants are often burdened with the characteristics such as higher order, time delay and nonlinearities [1]. While modeling the complex systems like aircraft mechanism, Atomic plant process monitoring, fuel injector and spark timing of automobile it can be noted that the system order is increased. The analysis and synthesis of higher order systems are difficult and generally not desirable on economic and computational considerations. Thus, it is necessary to obtain a lower order system so that the obtained lower order maintains the characteristics of the original system. This helps in minimizing the variations during design and realization of suitable control system components to be attached to the original system.

Model order formulation is the process of deriving the lower order model from the higher order model. Model order formulation approximates the complex system by simple one. The main aim of the formulation is to find the best possible approximation of the output of the original system. During the past four decades, numerous impressive varieties of new techniques [2] - [6] have been developed for obtaining lower order models from higher order linear system. Each of these methods has both advantages and disadvantages when tried on a particular system.

Several methods have been developed for designing a PID controller. Ziegler et al., [7] have proposed the frequency response method by using information from the Nyquist curve of the system. The method is only suitable for systems with monotonic step response. Hang et al., [8] have reexamined the Ziegler-Nichols method and proposed new tuning formulae, in which setting point weight for systems with PID controllers are introduced. Zhuang et al., [9] proposed an optimal design of PID controllers based on the minimization of an integral criterion. Yeung et al., [10] presented the graphical method for common continuous time and discrete time compensators.

Various methods are developed by employing frequency response matching techniques for designing the controllers. Rattan et al., [11] proposed a method based on complex curve fitting and involves the matching of frequency response of closed loop system with the reference model. Tschauer [12] has proposed the jury stability conditions derived from Routh and Fuller tables. The digital controller design method proposed by Inouka et al., [13] is based on series expansion of pulse transfer function. Aguirre [14] introduced a method for the design of continuous time controllers by matching a combination of time moments and Markov parameters of the closed loop system. The main purpose of the approach is to reduce the excessive overshoot of the system to be compensated. To enhance the capabilities of traditional PID parameter tuning techniques, several intelligent approaches have been suggested to improve the PID tuning, such as those using Genetic Algorithms (GA) [15] and the Particle Swarm Optimization (PSO) [16]. With the advance of computational methods in the recent times, optimization algorithms are often proposed to tune the control parameters in order to find an optimal performance [17].

In this paper a simple algebraic scheme is proposed to design a PID controller for Linear Time Invariant Continuous System (LTICS). Adjunct Polynomial scheme is used for deriving the basic second order system from the original higher order system, and to obtain a fine tuned second order system depicting the original characteristics of the system, Modified Particle Swarm Optimization (MPSO) algorithm is proposed. Pole-zero cancellation method is employed for initialize the PID gain values. Matlab simulation procedures are used to obtain the optimal PID gain values. The robustness

Dr. S. N. Deepa is working as an Associate Professor in the Department of Electrical and Electronics Engineering, Anna University of Technology-Coimbatore, Coimbatore 641 047, Tamil Nadu, India (e-mail: deepapso@gmail.com).

G. Sugumaran is a Senior Engineering Research Fellow with the Department of Electrical and Electronics, Anna University of Technology- Coimbatore, Coimbatore 641 047, Tamil Nadu, India (e-mail: ursosug@gmail.com).
of the proposed scheme is compared with general PSO based formulated second order model.

II. DESCRIPTION OF THE PROBLEM

A. PID Controller Transfer Function

The standard block diagram of PID controller is shown in Fig.1. PID controller can be mathematically represented as [18],

\[u(t) = K_p e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \] \hspace{1cm} (1)

Where \(u(t) \) and \(e(t) \) denotes the control and error signals of the system. \(K_p \) is the proportion gain, \(T_i \) and \(T_d \) represents the integral and derivative time constants respectively. The corresponding PID controller transfer function \(G_c(s) \) is given as,

\[G_c(s) = K_p \left[1 + \frac{1}{T_i s} + T_d s \right] \] \hspace{1cm} (2)

Equation (2) can be rewritten as,

\[G_c(s) = K_p + \frac{K_i}{s} + K_d s \] \hspace{1cm} (3)

Where, \(K_p, K_i \) and \(K_d \) are the proportional, integral and derivative gain values of the controller.

B. Higher Order Transfer Function

Consider an \(n \)th order linear time invariant continuous system represented by,

\[G(s) = \frac{N(s)}{D(s)} = \frac{\sum_{i=0}^{m-1} A_is^i}{\sum_{i=0}^{n} a_is^i} \] \hspace{1cm} (4)

Where, \(N(s) \) is the numerator polynomial and \(D(s) \) is the denominator polynomial. Also \(A_i \) and \(a_i \) represents the constant coefficients of the \(s \)-terms of the numerator and denominator of \(G(s) \). Equation (4) represented the higher order continuous system transfer function.

C. Lower Order Transfer Function

To find a \(m \)th lower order model for the continuous system \(R^m(s) \), where \(m < n \) in the following form represented by (5), such that the formulated lower order model retains the characteristics of the original system and approximates its response as closely as possible for the same type of inputs.

\[R^m(s) = \frac{N^m(s)}{D^m(s)} = \frac{\sum_{i=0}^{m-1} B_is^i}{\sum_{i=0}^{m} b_is^i} \] \hspace{1cm} (5)

Where, \(N^m(s) \) and \(D^m(s) \) are the numerator polynomial and denominator polynomial of the formulated lower order model respectively. Also \(B_i \) and \(b_i \) represent the constant coefficients of the \(s \)-terms of the numerator and denominator of \(R^m(s) \).

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) technique appeared as a promising algorithm for handling the optimization problems. PSO is a population-based stochastic optimization technique, inspired by social behavior of bird flocking or fish schooling [19]. PSO is inspired by the ability of flocks of birds, schools of fish, and herds of animals to adapt to their environment, find rich sources of food, and avoid predators by implementing an information sharing approach. PSO technique was invented in the mid 1990s while attempting to simulate the choreographed, graceful motion of swarms of birds as part of a socio cognitive study investigating the notion of collective intelligence in biological populations.

The velocity of a particle is influenced by three components namely, inertial momentum, cognitive and social. The inertial component simulates the inertial behavior of the bird to fly in the previous direction. The cognitive component models the memory of the bird about its previous best position, and the social component models the memory of the bird about the best position among the particles. Mathematical model for PSO as is follows [19],

Velocity update equation is given by

\[V_{i+1} = \omega \times V_i + C_1 \times r_1 \times (P_{best_i} - S_i) + C_2 \times r_2 \times (G_{best} - S_i) \] \hspace{1cm} (6)

Position update equation is given by

\[S_{i+1} = S_i + V_{i+1} \] \hspace{1cm} (7)

Each particle tries to modify its velocity and position and based on (6) and (7) and reaches the target.

Where,

\[V_i = \text{Velocity of particle} \]
In this new proposed modified PSO having better optimization result compared to general PSO by splitting the cognitive component of the general PSO into two different components. The first component can be called good experience component. This means the bird has a memory about its previously visited best position. This is similar to the general PSO method. The second component is given the name by bad experience component. The bad experience component helps the particle to remember its previously visited worst position. To calculate the new velocity, the bad experience of the particle also taken into consideration [20].

The new velocity update equation is given by

\[V_{i+1} = \omega \times V_i + C_{1g} \times \eta_1 \times (P_{besti} - S_i) + C_{1b} \times \eta_2 \times (S_i - P_{worsti}) + C_2 \times r_3 \times (g_{besti} - S_i) \]

(8)

Where,

- \(C_{1g} \) = Acceleration coefficient, which accelerate the particle towards its best position
- \(C_{1b} \) = Acceleration coefficient, which accelerate the particle away from its worst position
- \(P_{worsti} \) = Worst position of the particle \(i \)
- \(r_1, r_2, r_3 \) = Uniformly distributed random numbers in the range [0 to 1]

The algorithmic steps for the modified PSO is as follows

Step 1 Select the number of particles, generations, tuning accelerating coefficients \(C_{1g}, C_{1b}, \) and \(C_2 \) and random numbers \(r_1, r_2, r_3 \) to start the optimal solution searching
Step 2 Initialize the particle position and velocity
Step 3 Select particles individual best value for each generation
Step 4 Select the particles global best value, i.e. particle near to the target among all the particles is obtained by comparing all the individual best values

Step 5 Select the particles individual worst value, i.e. Particle too away from the target
Step 6 Update particle individual best (pbest), global best (gbest), particle worst (Pworst) in the velocity equation (8) and obtain the new velocity
Step 7 Update new velocity value in the equation (7) and obtain the position of the particle
Step 8 Find the optimal solution with minimum ISE by the updated new velocity and position

V. STEPS FOR MPSO BASED MODEL ORDER FORMULATION TECHNIQUE

A. Adjunct Polynomial Scheme

The adjunct polynomial scheme is used to obtain the approximate second order model for the given higher order system. This scheme has the following steps

Step 1 Consider an \(n \)th order linear time invariant continuous system represented by the transfer function \(G(s) \) in general form,

\[G(s) = \frac{N(s)}{D(s)} = \frac{A_{n-1}s^{n-1} + A_{n-2}s^{n-2} + \ldots + A_1s + A_0}{a_n s^n + a_{n-1}s^{n-1} + \ldots + a_2 s^2 + a_1 s + a_0} \]

(9)

Step 2 Calculate the transient gain (TG) and steady state gain (SSG) for the given higher order system in equation (9)

\[TG = \frac{A_{n-1}}{a_n} \]

(10)

\[SSG = \frac{A_1}{a_0} \]

(11)

Step 3 For simplicity the approximate lower order model to be formulated using adjunct polynomial method is given by

\[R(s) = \frac{A_1 s + A_0}{a_2 s^2 + a_1 s + a_0} \]

(12)

Step 4 Scaling the equation (12),

\[R(s) = \frac{s + \frac{A_1}{a_2}}{s^2 + \frac{a_1}{a_2} s + \frac{A_0}{a_2}} \]

(13)

Step 5 To maintain the TG and SSG using the equations (10) and (11) in equation (13)

\[R(s) = \frac{(TG)s + (SSG)s}{s^2 + \frac{a_1}{a_2} s + \frac{A_0}{a_2}} \]

(14)

Step 6 The coefficients of the approximated second order model \(R(s) \) by equation (14) as give as input to modified PSO. The MPSO used to search the better value of \(a_0 / a_2 \) and \(a_1 / a_2 \).
B. Modified Particle Swarm Optimization

Modified PSO algorithmic steps are applied after the approximate second order model \(R(s) \) obtained, shown in the equation (14), by using the modified particle swarm optimization algorithm the formulated lower order model is achieving the objective minimum ISE and follow the constraints. The flowchart for the proposed model order formulation scheme is as shown in Fig. 2.

![Flowchart for model order formulation of linear time invariant continuous systems](image)

VI. GENERAL ALGORITHM FOR DESIGNING THE PID CONTROLLER

Step 1: Read the open loop transfer function of the given higher order system
Step 2: Form the closed loop transfer function
Step 3: Obtain the step response of the closed loop system
Step 4: Check the response for the required specifications.
Step 5: If the specifications are not met, get the reduced order model by using proposed MPSO based formulation technique and design a controller for the reduced order model.
Step 6: Obtain the initial values of the parameters \(K_P, K_I \) and \(K_D \) by pole zero cancellation.
Step 7: Cascade the controller with the reduced order model and get the closed loop response with the initial values of the controller parameters.

Step 8: Find the optimum values for the controller parameters which satisfy the required specifications.
Step 9: By applying the optimum values, cascade this controller with the original system.
Step 10: Obtain the closed loop response of the reduced order system with the controller.
Step 11: Obtain the closed loop response of the original system with the controller.

VII. NUMERICAL EXAMPLE

Let us consider linear time invariant continuous system represented in the form of transfer function given in [21] as,

\[
G(s) = \frac{35s^7 + 1086s^5 + 13285s^3 + 82402s + 278376}{s^9 + 33s^7 + 437s^5 + 3017s^3 + 11870s^2 + 27470s + 37492 + 25880s + 9600}
\]

\[
R(s) = \frac{35s^7 + 1086s^5 + 13285s^3 + 82402s + 278376}{s^9 + 33s^7 + 437s^5 + 3017s^3 + 11870s^2 + 27470s + 37492 + 25880s + 9600}
\]

\[
TG = \frac{35}{1} = 35
\]

\[
SSG = \frac{194480}{9600} = 20.26
\]

Step-1

Calculate the transient gain (TG) and steady state gain (SSG) for the given higher order system in (15).

\[
TG = \frac{35}{1} = 35
\]

\[
SSG = \frac{194480}{9600} = 20.26
\]

Step-2

Applying Adjunct polynomial scheme, [Appendix] to \(G(s) \) in (15) to get approximated second order model \(R(s) \),

\[
R(s) = \frac{482964s + 194480}{37492s^2 + 28880s + 9600}
\]

Step-3

On scaling (17),

\[
R(s) = \frac{s + 0.4027}{s^2 + 0.7703s + 0.2561}
\]

Step-4

To maintain TG and SSG, use the Equation (14) the result \(R(s) \) becomes

\[
R(s) = \frac{35s^2 + 5.1886}{s^2 + 0.7703s + 0.2561}
\]

Step-5

The MPSO algorithm is now invoked to search the values of ‘s’ term (0.7703) and the constant term (0.2561) of the denominator in \(R(s) \) represented by (19), so the characteristics of second order model matches the given higher order system given by (15). MPSO determines a better reduced second order model with the least integral square error. The transfer function of the reduced second order model obtained using MPSO scheme is,
Step-6
Performance specifications are considered with respect to the closed loop response of the compensated system to unit step input. The design specifications are chosen as
(i) Overshoot \(\leq 1\% \)
(ii) Settling time \(\leq 1 \) seconds
(iii) Overshoot \(\leq 1\% \)

Step-7
The closed loop transfer function of the unity feedback system with \(G(s) \) can be represented as,
\[
T(s) = \frac{G(s)}{1 + G(s)} \tag{21}
\]
the output response of \(T(s) \) is not stable within the specified design specification. So the PID controller is cascaded to the forwarded path to adjust the response.

Step-8
Applying pole- zero cancellation method to initialize the \((K_P, K_I \text{ and } K_D) \) values as, \(K_P = 3.3014, K_I = 3.1143 \text{ and } K_D = 1 \)

Step-9
Using the simulation procedure the initial parameters are tuned to get unit response of the compensated system to meet the required specification are, \(K_P = 4.634, K_I = 3.5 \text{ and } K_D = 0.0115 \). The transfer function of the designed PID controller is as follows,
\[
G_c(s) = \frac{0.0115s^2 + 4.634s + 3.5}{s} \tag{22}
\]

Step-10
The closed loop transfer function of the PID controller represented by \(G_c(s) \) in equation (22) attached to the second order model represented by \(R(s) \) in equation (20) is obtained as,
\[
T_c(s) = \frac{0.4025s^3 + 162.9s^2 + 414.9s + 220.8}{1.4025s^3 + 166.2s^2 + 418s + 220.8} \tag{23}
\]

Step-11
The closed loop transfer function of the PID controller represented by \(G_c(s) \) in equation (22) attached to the original higher order system represented by \(G(s) \) in equation (15) is obtained as,
\[
T_c(s) = \frac{1584000s^4 + 3352000s^3 + 4021800s^2 + 2592000 + 680680}{1.4025s^9 + 207.7s^8 + 5745s^7 + 69330s^6 + 443400s^5 + 1612000s^4 + 3389000s^3 + 4061000s^2 + 2601000 + 680680} \tag{24}
\]

The unit time responses of \(G(s) \), \(T_c(s) \) and \(T'_c(s) \) are represented by equations (15), (23) and (24) are shown in Fig.3, Fig.4, and Fig.5 respectively. The comparison of the unit time response specifications are given in Table 1.
TABLE I

<table>
<thead>
<tr>
<th>Specification details</th>
<th>Original system</th>
<th>Reduced order system</th>
<th>Original system with proposed PID controller</th>
<th>PSO based reduced order system with proposed PID controller</th>
<th>MPSO based reduced order system with proposed PID controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise time (sec)</td>
<td>1.0702</td>
<td>1.0925</td>
<td>0.0196</td>
<td>0.0201</td>
<td>0.0194</td>
</tr>
<tr>
<td>Settling time (sec)</td>
<td>1.5829</td>
<td>1.7438</td>
<td>0.0365</td>
<td>0.0379</td>
<td>0.0369</td>
</tr>
<tr>
<td>% Peak overshoot</td>
<td>0.64</td>
<td>0.2971</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak time (sec)</td>
<td>2.2253</td>
<td>2.8888</td>
<td>0.5006</td>
<td>0.5017</td>
<td>0.5004</td>
</tr>
</tbody>
</table>

VII. DISCUSSION

During MPSO algorithm process various parameters are used as, number of generations=50, number of particles = 40. For successfully implement the MPSO, the values of the parameters inertia weight (w) = 0.5, accelerating factors C1 and C2 are choose by 0.5. The MPSO algorithm was coded in Intel Pentium processor 4.0, 2.8 GHz, 256 MB RAM and it took 10 seconds by CPU for complete the simulation. Fig.3 gives the unit step time response the given eight order linear time invariant continuous system, it exceed the desired design specifications. For achieving the desired output response without computational difficulties, MPSO technique is invoked to find the better second order system. Formulated second order system based on MPSO techniques effectively depicts the original characteristics of the higher order system. Closed loop response of the proposed PID controller with formulated second order system is given in Fig.4. Fig. 5 represents the closed loop response of the higher order system with proposed controller. Table 1 show that the proposed modified particle swarm optimization gives the better system response for the higher order system. From Fig.4 and Fig.5 its observed that the formulated lower order system depicts the characteristics of the original higher order system effectively and update the worst experience of the particle in the velocity equation gives better optimal solution compared with the general PSO model.

VIII. CONCLUSION

The quality of a formulated lower order model is judged by designing the PID controller. PID controller of the formulated lower order system effectively controls the original high order system. The main advantage of the proposed method is that it is easy of implementation and least elapsed time. The proposed approach can also be used for designing a discrete PID controller. This can also extended for other evolutionary techniques and hybrid methods and also it extended for further design of compensators as well as state variable controllers and observers for stabilization process.

APPENDIX

Consider an n th linear time invariant continuous higher order system represented by its transfer function as

\[G(s) = \frac{A_n s^{n-1} + A_{n-2} s^{n-2} + ... + A_3 s^3 + A_2 s^2 + A_1 s + A_0}{a_n s^n + a_{n-1} s^{n-1} + ... + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \]

For n=2,3,4,5,..., the Adjunct Polynomial scheme for obtaining the approximated lower order models from the given higher order system is as follows:

First order: \[\frac{A_0}{a_1 s + a_0} \]

Second order: \[\frac{A_2 s + A_0}{a_3 s^2 + a_1 s + a_0} \]

Third order: \[\frac{A_3 s^2 + A_1 s + A_0}{a_4 s^3 + a_1 s^2 + a_2 s + a_0} \]

(\text{n-1}) th order: \[\frac{A_{n-2} s^{n-2} + A_{n-3} s^{n-3} + ... + A_1 s + A_0}{a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + ... + a_1 s + a_0} \]

Equations (26) through (29), gives the lower order models formulated using adjunct polynomial scheme from the given higher order system G(s). Based on the requirement, suitable lower order model can be selected and operates. It should be noted for a higher order system of order ‘n’, (n-1) lower order models could be formulated. This method of selection of approximate lower order models helps to set the initial values of operating parameters to be used in the Modified Particle Swarm Optimization process.

REFERENCES

