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Abstract— Many experimental results suggest that more precise
spike timing is significant in neural information processing. We
construct a self-organization model using the spatiotemporal pat-
terns, where Spike-Timing Dependent Plasticity (STDP) tunes the
conduction delays between neurons. We show that, for highly syn-
chronized inputs, the fluctuation of conduction delays causes globally
continuous and locally distributed firing patterns through the self-
organization.

Keywords— self-organization, synfire-chain, Spike-Timing Depen-
dent Plasticity, distributed information representation

I. INTRODUCTION

MULTIUNIT recordings from the frontal cortex of be-
having monkey suggest that a spatiotemporal pattern of

highly synchronous firing of neural population can propagate
through several tens of synaptic connections without losing
high synchronicity[1]. This phenomenon is called ”synfire-
chain”, which implies that exact spike timing is utilized in
information processing.

Modeling studies showed that the pulse packet can propa-
gate stably in the presence of background noise if a fully large
number of neurons in a pool are firing and the synchronization
is strong enough [4], [5]. This propagation implies that the
neurons with long time-constant can convey information, with
the precise spike timing preserved.

Additionally, several studies suggest that the dynamical
changes in synchronized cell assemblies are equivalent to
the coding of information in external stimuli. Hamaguchi
et al. showed that in a feed-forward network, synchronized
population can convey the quantitative information when the
neurons have Mexican-Hat-type connections between layers
[7]. Similarly, Aviel et al. showed that by adding inhibitory
pool to a homogeneous feed-forward network, synfire-chain
can be embedded in the balanced network[3]. This network
can also utilize the quantitative information.

In a primary visual cortex, neurons are arranged to preserve
sensory topological structure. The input patterns near to each
other are mapped into spatially similar firing clusters.

On the other hand, in an inferotemporal cortex (IT), which
is the last primary visual area along the ventral visual path-
way, it is considered that distributed firing patterns represent
information. IT neurons respond to complex object features
such as a particular shape or a combination of shape. Exper-
imental results suggest that IT neurons located near to one
another often respond to the stimuli that are similar to each
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other[12]. However, other results suggest that the selectivity
of the neurons is quite different from that of their adjacent
neurons[9].

In this paper, we show that self-organization is realized
using locally synchronized input patterns. If the localized
patterns are highly synchronized, the fluctuation of conduction
delays causes the distributed information representation. These
results suggest that STDP forms highly synchronous cell
assemblies changing through external stimuli. This strategy
can be crucial to solve binding problems.

II. SELF-ORGANIZATION USING LOCALLY SYNCHRONIZED

INPUT PATTERNS

We use a simple Integrate & Fire neuron model, and the
membrane potential V is determined as

τV V̇ = −(V − VS) + GE(t)(V − VE) + GI(t)(V − VI)

with Vs = VI = −70.0mV, VE = 0.0mV, and τV = 5msec.
The synaptic inputs GE and GI are expressed as spatiotem-
poral integration of synaptic efficiencies characterized by step
rise time and exponential decay.

GE,I(t) =
∑

j

WE,I
ij

∑
sk

Θ(t− sk) exp(−(t− sk))/τE,I (1)

where Θ(t) is step function and the time-constant is chosen
as τE = τI = 5.0ms. The synaptic strength Wij is a
transmission efficiency of the connection. All efficiencies from
inhibitory neurons are assumed to have negative values (In-
hibitory synapses), while all from excitatory ones are positive
(Excitatory synapses). The strength W I

ij corresponding to
the inhibitory ones are chosen as the constant values whose
range is [0.18, 0.22]. On the other hand, the strength WE

ij

corresponding to excitatory neurons are modified via STDP
whose range is [0, 0.05]. When the membrane potential V
reaches a threshold value Vthr = −54mV, the neuron fires and
the membrane potential is reset to Vres = −60mV. After firing,
GE,I is kept zero during 3ms (absolute refractory period). On
these conditions, about 20 coincident excitatory spikes elicit
firing.

The model neural network is schematically shown in Fig.
1(a). Based on column structures of cortical neurons, the
model network is composed of one-dimensional N columns
having m neurons, which satisfies the periodical boundary
condition. In this paper, we define m = 1. The network
consists of excitatory and inhibitory rings connected to each
other. We chose that the excitatory ring has 100 neurons and
the inhibitory one has 50 neurons.

In many brain areas, the temporal precision of spikes during
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Fig. 1. (a) Network model. (b) Typical Behavior of the network, which
detect synchronized firing. (c) Two types Input. (d) Schematic Illustration of
input patterns.

stimulus-locked responses can be in the millisecond range.
Reproducible temporal structure can also be found. Therefore,
a “delay tuning mechanism” is expected. From this viewpoint,
we regard the role of STDP as a tuning of the conduction
delays of the neurons.

Some experiments results in cerebral cortex suggest that
local inhibitory circuits contribute to improve the orientation
selectivity [12]. We, therefore, determined that the inhibitory
neurons receive common inputs with the excitatory ones, and
consider the case that the recurrent inhibitory conduction
delays DIE

ij , DII
ij have an identical short value DI = 1.0ms.

Since the excitatory and inhibitory neurons receive inputs from
common layer, their firing patterns are similar to each other.
After short delay DI , both of them receive inhibitory recurrent
spikes and these inputs suppress the firings of neurons, whose
postsynaptic spike latencies are large. As a result, this network
detects coincident firing neurons with short latencies (Fig.
1(b)).

We assume that the input layer 1 (IL1 in Fig. 1(c)) has 100
excitatory neurons, of which 25 neurons fire synchronously

with a small fluctuation of dispersion σ, while the other 75
neurons fire randomly (10Hz Poisson spikes). Gamma-band
oscillations are widely observed in brain [8]. Therefore, we
determined that input patterns are changed with a 25ms inter-
val. We chose a set of 25 neurons as the spatially continuous
ones forming a pattern. We determined that each synchronized
set is represented 4 times repeatedly. After the interval, the
25 neurons are shifted. This condition yields a continuously
changing pattern in which each center positions of the neurons
represents the stimuli. The neurons at the Output layers
(OL) also receive 100 excitatory and 50 inhibitory inputs
firing randomly at other input layers (OILs). Fig. 1(d) shows
schematic illustration of this inputs.

We determine the conduction delay DOE
ij , from input

Δ

Δ

0
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LTD
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postsynaptic neuron

A+

A-

t1 t2

t =(   -    )t1 t2

(a) (b)
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WW

Fig. 2. (a) Window function of STDP.(b) Time Diagram shows that only spike
pairs connected by arrows contribute to plasticity (near-neighbor interaction).

neuron i at IL1 to excitatory neuron j at OL, proportional
to distance in such a manner that the periodical boundary
condition is satisfied. That is

DOE
ij ∝ |i − j| mod N (2)

where i and j are neuron indices, and we define

|i − j| mod N ≡ min(|i − j|, N − |i − j|) (3)

Since the number of inhibitory output neurons is half of the
input-neurons number, the delay DOI

ij from input neuron i at
IL1 to the inhibitory neuron j at OL is determined to be pro-
portion to |i− 2j| mod N , which should also satisfy periodical
boundary condition. The maximum conduction delay is 3ms,
while the minimum is 0ms.

The probability that an input neuron is connected to output
neuron is 0.8, and the initial values of the synaptic strength
are chosen about the half of the maximum. In this section,
we consider the case that there is no recurrent excitatory
connection. STDP was implemented only for the excitatory
synapses of the OL neurons. The change of the synaptic
strength ΔW caused by a single STDP is expressed as

ΔW =
{

A+ exp(−Δt/τ+) Δt > 0
A− exp(−Δt/τ−) otherwise

(4)

where A+ and A− are the maximum magnitude of the synaptic
modification. We chose A+ = 0.02, A− = 0.025, and τ+ =
τ− = 20ms. LTD occurs only after the latest firing, and LTP
does after the last firing (near-neighbor interaction). When one
firing pattern is presented, the input spikes elicit a postsynaptic
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Fig. 3. Simulation results. (a) Conduct Delays map. (b) Weight distribution.
(c) Raster plot.

response, triggering the STDP. Synapses carrying input spikes
just preceding the postsynaptic ones are potentiated and those
with later ones are depressed. This modification causes a
decrease of the postsynaptic spike latency. Hence, at the next
time, when the same input pattern is presented, firing threshold
will be reached sooner. Consequently, some synapses that were
previously potentiated are depressed. At the same time, the
input may potentiate other synapses concerning proceeding
spikes. By iteration, the postsynaptic spike latency will tend to
stabilized at a minimal value. That is, the first-spike synapses
become fully potentiated, while later firings are fully depressed
[6].

In this network, inhibitory neurons receive inputs similar to
those that excitatory neurons receive, and excitatory synapses
to inhibitory neurons are modified. The changes of the post-
synaptic spike latencies of inhibitory neurons are almost in
keeping with excitatory ones. Therefore, this network can
detect coincidence firings, even if the synaptic efficiency has
changed during learning.

To investigate a degree of spatiotemporal clustering, we
calculated “ coincident clustering histogram”. If a difference
of firing time of two neurons is within a time bin ΔT ,
we considered that these two neurons are coincident, and
computed spatial difference histogram

∑
k ck(i − j),

ck(i − j) =
{

1 |tki − tkj | < ΔT
0 otherwise

(5)

where tki denotes the firing time of neuron i for input pattern
k. The simulation result is shown in Fig. 3. The synapses
only with shortest conduction delays survive and others were

A- > A+ : 
The synaptic efficiencies 
  decrease gradually 
if they fire to noisy inputs.High Synchronized firing

random firing

-

- -+

+

+ + -
+

+ + + -

+ + + -

(a) (b)

Fig. 4. Schematic illustration of self-organization. (a) The case that there is
no inhibitory feedback inputs.(b) This model.

pruned. It also reduces noise firing. As a result, STDP refines
the patterns.

We consider a mechanism of this self-organization. If there
is no feedback from the inhibitory neurons at OL and all the
neurons at IL1 synchronize, only synapses with the shortest
conduction delays are strengthened. However, in the case that
only a part of input neurons fire synchronously, if the number
of the synchronized neurons are enough small, all neurons
at OL fire after receiving the input spike arriving. Then, all
synaptic connections are strengthened (Fig. 4(a)).

On the other hand, in the case that inhibitory feedback in-
puts suppress the firings, only neurons having short conduction
delays fire, and modify their synaptic connections. Moreover,
in this situation, other input neurons fire randomly. Such firings
of input neurons contribute to LTP and LTD in the almost
same probability. Since a modification value A− is larger than
A+, the connections for the neurons are depressed gradually.
Therefore, the mechanism of the synchronous firing detection
by the inhibitory neurons brings the effect of leaky integration
in synaptic modification (Fig. 4(b)).

Thus, the inhibitory recurrent connection causes coincident
detection, and the network having short conduction delays is
organized through STDP.

III. MOTIVATION

In Section II, we showed that self-organization can be real-
ized using locally synchronized input patterns. We previously
showed that in this model an orderly topological map is
formed using locally synchronized input patterns[2]. In higher
brain area, since neurons receive inputs from many area, it is
considered that the locally various firing patterns are needed
to represent the various information with a limited number
of neurons. We consider that an output layer consists of N
neurons, out of which K neurons fire for each pattern. Then

there are (
N
K

) types of firing patterns. However, if firing

neurons exist locally continuous, there exist only N kinds
of firing patterns. In order to express the difference in each
pattern, locally discontinuous firing patterns are required.

In animal brain, neural selectivity in IT is more complex
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than that in a primary visual cortex [12]. An experimental re-
sult of optical imaging showed that there are spots specifically
activated by a certain shape, and the position of activating spot
changes gradually along the cortical surface as the stimulus
is rotated in depth[11]. On the other hand, the selectivity
of the neurons is quite different from that of their adjacent
neurons[9].

Wada et al. proposed a self-organization map model trained
with inputs randomly generated from two rings embedded
in a three dimensional unit sphere[10]. In their model, the
network has local and random intra-layer connections. They
showed that the large distance of two rings causes the glob-
ally continuous and locally distributed firing patterns, while
the small distance causes locally continuous firing patterns.
They concluded that the difference between the information
representation of V1 and IT cortices is caused by a difference
in the input space structures.

In their model, patterns are coded based on the mean firing
rate. However, recently there exits many experimental results
that suggest more precise spike timing plays a key role in
the brain. In this paper, we treat the problem of the self-
organization of clusters having locally distributed patterns
using synchronized input patterns.

IV. MODEL

Next, we consider the model having fluctuated conduction
delays. Fig. 5 shows a schematic image of this model.

DOE

DOE DOE

σcd

σst
#Input

σst σcd+

Near Far

Delay

Flucuation of 
conduction delays

Fluctuation
of input wave

Fluctuation
of spike trainsInput Layer

output neuron

Fig. 5. Two types of fluctuation of input waves.

We denote a firing time of neuron i at IL1 as tIi (k). If a
mean firing time of pattern k as T (k), the firing time tIi (k)
of neuron i is expressed as T (k) + tst

i (k), where tst
i (k) is the

variance of firing time which depend on N(0, σ2
st). We denote

a time of this spike arrival for neuron j as tOj (k) Then the time
tOj (k) is expressed as

tOj (k) = T (k) + tst
i (k) + DOE

ij (6)

We denote the mean and the variance of the conduction delays
from IL1 to OL as DO

ave and σ2
cd. Eqn.6 is expressed as

tOj (k) = T (k) + DO
ave + tst

i (k) + dO
ij (7)

where tst
i (k)+dO

ij is depend on N(0, σ2
st +σ2

cd). We consider
the influence on these fluctuations for the self-organization.

We simulated for two different sets of fluctuation of disper-
sion (σst, σcd) . We determined that input patterns are changed
with a 25ms interval. At first, we chose a set of 30 neurons
as the spatially continuous ones forming a pattern. Each
synchronized set is represented 4 times repeatedly. Hence, the
patterns are shifted at 100ms interval. After the interval, the
30 neurons are shifted.

After learning, we use 10 input patterns each of which
is represented 40 times. Each pattern is shifted at 1000ms
interval. Fig. 6 shows the raster plot of the input patterns.

In this paper, we assumed that there is only one neuron in
each column (m = 1). In cerebral cortex, however, there are
much more neurons than those in this model. It is reasonable
that not all the neurons in a column fire for each pattern.
Some firings can cause the long-term potentiation of the other
connections that were not considered in this network model.
Taking this into consideration, the modification parameters
of recurrent connections B± are not necessarily the same
values as those of external connections A±. We, therefore,
determined the sizes of the synaptic modifications for recurrent
connections as B+ = 0.02, B− = 0.015.

Each neuron at OL connects to their neighboring 20 ex-
citatory neurons. We determined that the recurrent excitatory
conduction delays DEE

ij , DIE
ij have an identical short value

DE = 0.5ms. If the neurons receive large recurrent excitatory
inputs, the neurons can continue firing without inputs from
IL1. To avoid this bursting, the strength W I

ij corresponding to
the recurrent inhibitory synapses are chosen as the constant
values whose range is [0.18, 0.22]. On the other hand, the
strength WE

ij corresponding to recurrent excitatory synapses
are modified via STDP whose range is [0, 0.025]. Additionally,
we determined that the maximum conduction delay from
neurons at IL1 to those at OL is 5ms, while the minimum
is 0ms.

Fig. 7 shows the raster plot of the excitatory neurons during
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Fig. 6. (a) Input pattern sets for training. (b) Inputs pattern sets after learning.

learning. When the fluctuation of input synchronization σst

is larger than the fluctuation of conduction delays σcd, in
each firing cluster, neurons fire locally continuously (Fig.7(a)).
While the fluctuation of conduction delays σcd is larger
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than the fluctuation of input synchronization σst, there exist
neurons that do not fire in firing clusters.

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000

#N
eu

ro
n

time(ms)
(a)

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000

#N
eu

ro
n

time(ms)
(b)

Fig. 7. (a) and (b) Raster plot for different set of fluctuation. (a) (σst, σcd) =
(3.0, 1.0) (b) (σst, σcd) = (1.0, 3.0)

When both a neuron with short conduction delay and that
with long one fire simultaneously, the input spike from the
neuron with short conduction delay arrives earlier and the
synaptic connection is strengthened. On the other hand, the
connection with long conduction delay is depressed.

When the fluctuation of conduction delay is small and the
input variation is large, the order of the spike arrival changes
with each input pattern. In this case, reflecting the conduction
delays, the connection having shorter conduction delay is
strengthened through the learning. Since the conduction delays
of the neurons are similar to those of their adjacent neurons,
the behavior of the neurons is similar to those of neighboring
neurons. Therefore, locally continuous neurons fire for each
pattern.

On the other hand, when the fluctuation of conduction delay
is large, the order of the spike arrival reflects the fluctuation
of the conduction delays, and synaptic connections with the
short conduction delays are strengthened. The conduction
delays of the neuron at OL for the neurons at IL1 are
different from those of their neighboring neurons. It causes
locally discontinuous firing patterns. Since the time of spike
arrival is identical for each trial, the neuron with the specific
connections is strengthened.

We denote the firing rate of each neuron i for each pattern
k(k = 1, 2, · · · 10) as xi(k). We denote the spatially smoothed
firing rate as x̃i(k),

x̃i(k) =
1

2n + 1

l=n∑
l=−n

xi+l(k) (8)

Fig. 8 expresses the changing of the firing rate for each pattern.
We determined the smoothing parameter as n = 5. Fig. 8 (a)
and (b) show that the each firing pattern is globally continuous
and changing smoothly. On the other hand, Fig. 8 (d) shows
that the firing of a discontinuous neuron has occurred spatially
locally.

Fig. 9 shows the firing patterns for a specific input pattern
(pattern 8). Fig. 9 (b) shows that even if the neurons are near
to each other, the firing rate is different.

Fig. 10 shows the a covariance of the firing rate and
the clustered histogram. Fig. 10 (d) shows that when the
fluctuation of the conduction delays is large, the histogram
has ripples.
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V. DISCUSSION

When the degree of synchronization of input patterns is
low, a network consisting of locally continuous cluster is
organized. On the other hand, when the input patterns are
highly synchronized, the fluctuation of conduction delays
brings the locally distributed firing patterns through this self-
organization.

In this case, there exits neurons that do not fire even if their
adjacent neurons fire. It is probable that other input patterns,
which are not used in this self-organization, cause the firings
of these neurons. This means that the self-organized network
can express more information using the various combination of
neurons. It is known that IT neurons show more complicated
firing patterns[9].

In a primary visual area, the receptive field of neurons is
relatively narrow. Therefore, the fluctuation of the conduction
delays is small, and the fluctuation of the synchronicity is
predominant. Consequently, it is considered that firing patterns
of the neurons become locally continuous.

On the other hand, IT neurons receive inputs from many
visual area. Therefore, the fluctuation of the conduction delays
becomes large. Then, the degree of synchronicity of inputs
becomes high during the processing, and it is possible that
locally discontinuous firing pattern arises.

If firing patterns are locally discontinuous, there are many
considerable combinations. IT is the last primary visual area
and IT neurons must treat huge information at the retina
stage. Therefore, the locally distributed firings are effective
for treating various information.

Thus, it is possible that the high synchronicity of inputs
plays a key role to organize the various changing of local
combination of the neurons.

VI. CONCLUSION

Within brain, sensory information such as visual informa-
tion is decomposed and processed in parallel. Therefore, when
many stimuli are received, it is considered that the mean
firing rate of many neurons corresponding to the composition
element rises up simultaneously. In this cases, there exist many
alternatives to recompose the combination of each element. In
order to organize appropriate neural assemblies suited for the
sensory information, additional information other than a mean
firing rate is required.

We consider that the synchronicity of neurons yield the
appropriate combination of cell assembly. We showed that the
network can self-organize using locally synchronized input
patterns. In this network, synchronized firing clusters are
changing the combination of neurons dynamically according
to the changing of the input patterns. This strategy can be
crucial to solve binding problems.

It is known that the orientation selectivity of IT neurons
is more complex than that of V1. In this paper, we showed
that, through self-organization, the highly synchronous firing
and the fluctuation of the conduction delays cause globally
continuous and locally distributed firing patterns that are
consistent with the behavior of IT neurons.
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