Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Authors: R. C. J. Mphahlele, K. Bolton, H. Kasaini

Abstract:

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

Keywords: Activated Carbons, Binding energy, DFT, Force fields.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055996

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898

References:


[1] D. Mohan D, K.P. Sigh and V.K. Sigh: Wastewater treatment using low cost activated carbons derived from agricultural byproducts. Journal of hazardous materials Vol.152 pg. 1045-1053, 2008.
[2] O.S. Amuda, A. A. Giwa and I.A. Bello: Removal of heavy metals from industrial waste water using modified Activated carbon coconut shell. Biochemical Engineering journal Vol. 36 pg. 174-181 2007
[3] F.H. Frimmel, M. Assenmacher, M. U. Kumke, C. Specht: Removal of hydrophobic compounds from water with organic polymers: The adsorption behavior of industrial waste water. Vol. 41 pg. 731-736, 2004.
[4] F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous catalysis, Carbon vol. 36, pg. 159-175, 1998.
[5] J. A. Menendez, B. Xia, J. Phillips and L.R. Radovic: On the modification and characterization of chemical surface properties of activated carbon: Micro calorimetric, electrochemical, and thermal desorption probes, Langmuir, 13 (13), pg. 3414-3421, 1997.
[6] J.P. Chen, S.N. Wu and K.H Chong. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 41:1979-1986, 2003.
[7] H. Kasaini, K. R. Mbaya: Continuous adsorption of Pt ions in a batch reactor and packed bed column. Hydrometallurgy 07, 111-118, 2009.
[8] H. Zhang , I.M. Ritchie ; S.R. La Brooy. The adsorption of gold Thiourea complex onto activated carbon. Hydrometallurgy 72:3-4, 2004.
[9] K.L.L Rees, J.S.J. Van Deventer and R.C. Dume. Gold process modeling. The effect of ore type on leaching and adsorption dynamics at Telfer gold mine, Miner. Eng. 14 (8):887-900, 2001.
[10] N. Syna and M. Valix. Modeling of gold (I) cyanide adsorption based on the properties of activated bagasse. Miner. Eng. 16 (5): 421-427, 2003 .
[11] F. R. Stephen, R. Dimeska, S. Little and G. G. Wallace: Platinum recovery using inherently conducting polymers and common fabrics, fibres and polymers, Vol.8 No.5, 463-469, 2007.
[12] L. Ramos, J. Ovalle-Turribiartes, M.A. Sanchez-Castillo. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Carbon 37:609-617, 1999.
[13] H. Kasaini, M. Goto and S. Furusaki. Adsorption performance of activated carbon pellets immobilized with organo phosphorus extractants and amines: a case study for the separation of Pt (IV), Pd (II), and Rh (III) ions in chloride media. Separation Science and Technology, 36(13): 2845-2861, 2001.
[14] H. Kasaini, Everson R.C. and O.S.L. Bruinsma: Selective adsorption of platinum from mixed solutions containing base metals using chemically modified activated carbons. Separation Technology, 40:507-523, 2005.
[15] W. Yantasee; Y. Lin ; K. L. Alford ; B. J. Busche ; G. E. Fryxell and Mark H. Engelhard : Electrophlic aromatic substitution of amine and sulfonate auto fine grained activated carbon for aqueous phase metal ion removal , Separation Science and Technology ,Vol. 39 (14) pg. 3263- 3279, 2004.
[16] K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, K. Ueda, Adsorption of platinum (1V), palladium (II) and gold (III) from aqueous solutions into L-lysine modified cross linked chitosan resin. Journal of Hazardous Material Vol. 146, 2007.
[17] M. Georgakis, G. Stavropoulos and G.P. Sakellaropoulos : Molecular dynamics study of hydrogen adsorption in carbonaceous material and the effect of oxygen functional groups. International Journal of Hydrogen Energy Vol. 32(12), pg. 1999-2004, August 2007.
[18] S. A. Hall, I. Hamerton, B. J. Howlin and , A. L. Mitchell: Validating software and force fields for predicting the mechanical and physical properties of poly (bis-benzoxazine), Molecular Simulation, 34: 10, 1259 -1266, 2008.
[19] P. Fouquet, M.R. Johnson, H. Hedgeland, A. P. Jardine, J. Ellis and W. Allison Molecular dynamics simulation of the diffusion of benzene submonolayer films on graphite basal plane surfaces, Carbon 47: 627-2639, 2009.
[20] A. Miyamoto, M. Kubo, Lv. Chen, P. Selvan , Xxiaojing Wang , A theoretical study on the cyclopropane adsorption onto copper surfaces by density quantum chemical molecular dynamics methods, Journal of molecular catalysis A: chemical 220, 2004.
[21] D. K├╝nzel, T. Market, and A. Grob, D. M. Benoit: Bis (terpyridine)- based surface template structures on graphite - A forcefield and DFT study. Institute for Theoretical Chemistry, University of Ulm, D-89069 Ulm, Germany, 2009.
[22] Accelrys, Materials Studio Online Help, Release 5.0, Accelrys Software, Inc., San Diego, CA, 2009.
[23] H. Sun, P. Ren, J.R. Fried, The Compass Force Field: Parameterization and validation for phosphazenes, Computational Theory, Polymer Sci. Vol. 8 229-246, 1998.
[24] S. L. Mayo, B. D. Olafson, and W. A. Goddard III DREIDING: A Generic Force Field for Molecular Simulations J. Phys. Chem. 94, 8897- 8909, 1990.
[25] A. K. Rappe C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skid : UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations J. Am. Chem. SOC., 114, 10024-10039, 1992.
[26] M. Pavelka, J. V. Burda: Pt -bridges in various single strand and doublehelix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine adenine and cytosine , J Mol Model 13: 367-379, 2007.
[27] W. Wu , A. Al-Ostaz, A. H. D. Cheng, C. R. Song : Thesis -Properties of Portland cement major constituent using molecular dynamics simulations , Department of Civil Engineering, University of Mississippi, University, MS 38677, USA
[28] B. Liu, M. T. Lusk and J. F. Ely: Influence of Nickel Catalyst Geometry on the Dissociation Barriers of H2 and CH4: Ni13 versus Ni (111), J. Phys. Chem. 113:13715-13722, 2009.
[29] S.F. Sousa, P. A. Fernandes, M. J. Ramos 2007: General Performance of density functional, J. Phys. Chem. A :111, 10439-10452, 2007
[30] J. P. Perdew, J. A. Chevary, S. H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671, 1992.
[31] J. P. Perdew K. Burke Y. Wang, Phys. Rev. B 54, 16533, 1996.
[32] S. Tsuzuki, H. P. Lu¨thi, J. Chem. Phys., 114: 3949, 2001.
[33] D. R. Alfonso , K. Karapetian, D. C. Sorescu, and K. D. Jordan: Characterization of Water Clusters in Organic Molecular Hosts from Density Functional Theory Calculations, J. Phys. Chem. B, 108, 3431- 3436, 2004.
[34] D. H. Chi, N. T. Cuong, N. A. Tuan, Yong-Tae Kim, Ho Tu Bao Tadaoki Mitani, Taisuke Ozaki, Hidemi Nagao: Electronic structures of Pt clusters adsorbed on 5,5 single wall carbon nanotube, Chemical Physics letters 432, 2006.
[35] M. A. Fox and J. K. Whitesell: Organic Chemistry, 3rd Edition (1994) ISBN 978086-7202 076, pg 76-77 and 112-113.