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Abstract—The purpose of the present paper is to show that the
problem of geometrically nonlinear free vibrations of functionally
graded beams (FGB) with immovable ends can be reduced to that of
isotropic homogeneous beams with effective bending stiffness and
axial stiffness parameters by using an homogenization procedure.
The material properties of the functionally graded composites
examined are assumed to be graded in the thickness direction and
estimated through the rule of mixture. The theoretical model is based
on the Euler-Bernouilli beam theory and the Von Karman
geometrical nonlinearity assumptions. Hamilton’s principle is applied
and a multimode approach is derived to calculate the fundamental
nonlinear frequency parameters, which are found to be in a good
agreement with the published results. The non-dimensional
curvatures associated to the nonlinear fundamental mode are also
given for various vibration amplitudes in the case of clamped-
clamped FGB.

Keywords—Nonlinear vibrations, functionally graded materials,
homogenization procedure.

I. INTRODUCTION

ECENTLY, the developments in materials engineering
have led to consideration of special composites called
“functionally graded materials” (FGMs). They are
characterized by smooth and continuous variations in their
thermomechanical properties along the thickness of a structure
obtained by gradually varying the volume fraction of the
constituent materials. FGMs possess various advantages over
the conventional composite laminates, such as smaller thermal
stresses and stress concentrations and they can be designed to
achieve specific properties for different applications. Indeed,
FGMs are generally made of a mixture of ceramic and metal
to satisfy the demand of ultra-high-temperature environment
and to eliminate the interface problems. Hence, this new kind
of materials has been employed in the design of many
engineering structures such as aircrafts, space vehicles,
defense industries, electronics and biomedical equipments.
Because of the wide applications of FGMs, it is important
to study the dynamic behavior of FGM structures such as
beams which are used extensively as structural members and
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often subjected to relatively large vibration amplitudes,
compared to their thickness. Consequently, many structural
problems are encountered in these severe work conditions due
to material fatigue which is accelerated leading to structural
damages and catastrophic failures. These phenomena are more
significant around the natural frequencies of the structure, for
which the nonlinear vibration analysis becomes essential for a
reliable structural design.

Recently, the dynamic response of FG beams has been the
purpose of many research works. In [1], fundamental
frequency analysis of FG beams having different boundary
conditions has been made within the framework of the
classical, the first-order and different higher-order shear
deformation beam theories. Exact solutions for the bending
vibration problem of FG beams with variation of material
properties in a one-layer beam or in the layers of a
multilayered sandwich beam have been proposed in [2]. The
linear beam theory has been used for establishing the
equilibrium and kinematical equations, taking into account the
effect of the shear deformation and the effect of consistent
mass distribution and mass inertia moment. In [3], the
dynamic characteristics of a functionally graded beam with
axially or transversally material graduation through the
thickness have been presented. The finite element method has
been employed under the assumptions of the Euler—Bernoulli
beam theory to develop the discretized model and obtain a
numerical approximation of the motion equation. A mixed
method for forced vibration of functionally graded beams
subjected to moving loads has been developed in [4]. The
theoretical formulation is based on the Euler—Bernoulli beam
theory, and the governing equations of motion of the system
have been derived using Lagrange’s equations. Then, the
Rayleigh—Ritz method has been employed to discretize the
spatial partial derivatives and the differential quadrature
method has been used for the discretization of the temporal
derivatives. Static and free vibration analysis of functionally
graded layered beams have been conducted in [5] using a third
order zigzag theory based model. Two systems, Al/SiC and
Ni/Al1203, fabricated using powder metallurgy and thermal
spraying techniques respectively, have been considered for the
experimental validation. The detection of cracks in structural
members made of a functionally graded material has been a
significant subject due to their increasing applications in
various important engineering industries. A model-based
approach has been developed in [6] to determine the location
and size of an open edge crack in an FGM beam. The p-
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version of finite element method has been employed to
estimate the transverse vibration characteristics of a cracked
FG beam. In [7], approximate analytical expressions have
been presented for geometrically nonlinear vibration and post-
buckling analysis of FG beams on a nonlinear -elastic
foundation subjected to an axial force. The Euler-Bernoulli
assumptions together with The Von Kaman’s strain
displacement relation have been employed to derive the
governing partial differential equation of motion, the
analytical solution of which has been obtained using one
parameter Galerkin solution in conjunction with a variational
approach.

In the present paper, the problem of geometrically nonlinear
free and steady state periodic forced vibrations of clamped-
clamped FG beams with immovable ends is investigated using
Hamilton’s principle and spectral analysis. Based on the
governing axial equation of the beam in which the axial inertia
and damping are ignored, a homogenisation procedure is
proposed which reduces the problem studied to that of
isotropic homogeneous beams with effective bending stiffness
and axial stiffness parameters.

II. MODELING FUNCTIONALLY GRADED MATERIALS

In this section, we consider a clamped-clamped FG beam
having the geometrical characteristics shown in Fig. 1. It is
assumed that the FG beam is made of ceramic and metal, and
the effective material properties of the FG beam, i.e., Young’s
modulus E and mass densityp, are functionally graded in the
thickness direction according to a function of the volume
fractions V of the constituents.

. 1

A 4

Fig. 1 FG beam notation

According to the rule of mixture, the effective material
properties P, can be expressed as:

P=PV,+PV, (D)

where subscripts “m” and “c” refer to the metal and ceramic
constituents, respectively.

Various types of functions are used in the literature to
describe the variation of the volume fraction of the
constituents. Here, a simple power law is considered to
describe the variation of the volume fraction of the metal and
the ceramic constituents as follows:
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with Vm +VC =1

where k is a non-negative parameter (power-law exponent)
which dictates the material variation profile through the
thickness of the beam.

Effective material properties of the FG beam such as
Young’s modulus (E) and mass density (p) can be determined
by substituting (2) into (1), which gives:
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Fig. 2 Variation of the material properties of the FG beam through
the thickness: (a) Young Modulus, (b) mass density

III. NONLINEAR VIBRATION ANALYSIS

The Von Kéarméan type nonlinear strain—displacement
relationships are given by:

. ou* q{ow?
gl =—+—| — 5)
ox 2| ox
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oW @
K, = Ve (6)

a . . . . .
where &, is the nonlinear axial strain, KX is the curvature of

the beam. The total elastic strain energy VT of Euler-
Bernoulli beams is given by:

Lp . a
V, =EIONX5X+Mnydx )

in which N, and Myare the axial internal force and the

bending moment respectively, which are related to the strains
as follows:

N, =bA &2 +bB, K, )

M, =bB, &’ +bD, K, )

where

A,, Bjand D,
bending-extension, bending-bending coupling coefficients
respectively, and can be evaluated using the classical laminate
plate theory.

are the extension-extension,

By considering the following change of variable 2'=Z —d
, with d =B, /A, then B, vanishes and D,, becomes

D,, —(B}/A,). whereas A, doesn’t change in this new

coordinate system. Consequently, the total strain energy takes
the following new expression, involving the effective bending

stiffness: D, = D,, —(B} /A,) and the effective axial

stiffness Ay = A, /4
v, = [r(a/vj dx] . (az\/\ij d  (10)
8l ol X o\ oX
Blzl/All))

where (ES),; =bA,, and (El) 4 =b(D,, —(

(Ei)eff
2

Expression (10) for the total strain energy is the basis of the
proposed homogenisation procedure for replacing the FGM
beam problem with an equivalent classical isotropic beam
problem [8].

The kinetic energy, in which the axial and rotary inertia are
ignored, is given by:

a\2
] dx

1 ¢h/2 I OW
TR

For a general parametric study, we use the following non
dimensional formulation by putting:

(11)
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Applying Hamilton’s principle and expanding the

displacement W ® in the form of a finite series, the following
set of nonlinear amplitude equations is obtained:

*2 *
—w‘am_ =0,

ak; +a,a;a,b, i=1..,n (12)

where k' b;kl and m;} stand for the non dimensional

Ij >
classical rigidity tensor, the nonlinear rigidity tensor and the
mass tensor, respectively, which are defined as:

s 2unrF
* 'azwlawj *

1= b 03
* |8VV aW * IaW: avvl* "
by = — o L' [ = ¢ (14)
. h? (ES)
where o is given by: & = TH
eff
m;; :J.Oiwi*w?dx* (15)

To obtain the nonlinear vibration response of a clamped-
clamped FG beam in the neighborhood of its first resonant
frequency, the values of the linear rigidity matrix kij* and the
nonlinear geometrical rigidity tensor b.,kf have been calculated
usmg the ﬁrst s1x normalized symmetrlc linear beam function
Wi, Ws, L . The functions w; have been normalized in
such a manner that the obtained mass matrix equals the
identity matrix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the present work, the functionally graded material of the
beam is that considered in reference [7]. The top surface of the
FG beam is ceramic rich (E.=322.03 GPa, p. =2370 Kg/m3),
whereas the bottom surface of the FG beam is metal rich
(E,=207.08 GPa, p,,, =8166 Kg/m’).

In Table I, It is noted that the first nonlinear frequency
ratios an/@, calculated in the present work at various
vibration amplitudes in the case of an isotropic clamped-
clamped beam, agree very well with the results obtained in
[8], since the percentage error does not exceed 0.3%.
However, the solutions given in [7] overestimate the
frequencies of the clamped beams, especially for high values
of dimensionless amplitude.
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TABLE I
NONLINEAR TO LINEAR FREQUENCY RATIOS @'y /@, OF AN ISOTROPIC
CLAMPED-CLAMPED BEAM AT VARIOUS VIBRATION AMPLITUDES

neglecting the axial inertia and damping, an homogenization
procedure has been proposed which reduces the problem
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studied to that of isotropic homogeneous beams with effective

W =05 Present 8 7 . . . . .

(X ) [5) ) bending stiffness and axial stiffness parameters. Using a
1 1.0225 1.0221 1.0552 ltimod h T 6 . o h
) 10870 10856 12056 multimode approach, nonlinear requency rat1qs anl o have
3 11869 L1831 L4214 peen cgmpared to the results pubhshed. in [7] in the case of
4 13105 1.3064 1.6776 isotropic and FG beams. An overestimate of the natural

In Table 11, the fundamental nonlinear to linear Frequency
ratios "/ @' of the FG clamped-clamped beam, considered in
the present numerical simulation, are given and compared with
the published results in [7] for various vibration amplitudes.

TABLEII
NONLINEAR TO LINEAR FREQUENCY RATIOS @'y /@’ OF A FG CLAMPED-
CLAMPED BEAM AT VARIOUS AMPLITUDES

&, n=0.5 n=1.0 n=2.0

W =05) present [7] present [7] present [7]

0 1.000 1.000 1.000 1.000 1.0000 1.000
1 1.023 1.056 1.023 1.056 1.022 1.055
2 1.088 1.210 1.087 1.208 1.085 1.203
3 1.187 1.429 1.186 1.426 1.181 1.417
4 1.313 1.689 1.311 1.685 1.303 1.671
5 1.457 1.974 1.454 1.968 1.443 1.949

frequencies has been noted in the results given [7], due to the
assumed approximate solution adopted. The non-dimensional
curvature of the FG clamped beam, associated with the first
nonlinear mode, has also been given for different non
dimensional amplitudes. It has been clearly shown that the
nonlinear effect can be significant, especially at the centre and
in the regions of the clamps.

The main feature of the present contribution is the fact that
the existing analytical solutions, numerical techniques and
software developed over the years for the nonlinear analysis of
isotropic beams can be easily used for FG beams case, leading
to more accurate estimates of the nonlinear dynamic stress,
especially near to the clamps, which is a sensitive region in the
clamped beam.
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V.CONCLUSION

The present study deals with the problem of geometrically
nonlinear free vibrations of FG beams with immovable ends.
Using Hamilton’s principle and spectral analysis, and
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