
  
Abstract—In this paper, two-sided uniformly normal distribution 

techniques were used in the derivation of monotone likelihood ratio. 
The approach mainly employed the parameters of the distribution for 
a class of all size α. The derivation technique is fast, direct and less 
burdensome when compared to some existing methods. 
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I. INTRODUCTION 
N statistical hypothesis testing, a uniformly most powerful 
(UMP) test is a hypothesis test which has the greatest power 

1-β among all possible tests of a given size α. Neyman-
Pearson Lemma further states that the likelihood-ration test is 
UMP for testing simple (point) hypothesis. 

Let X denote a random vector taken from a parameterized 
family of probability density function (pdf) or probability 
mass function (pmf) given as f(x), which depends on the 
unknown deterministic parameter  . the parameter space 

 is partitioned into two disjoint sets   1. Let H0 
denote the hypothesis that   and H1 denote the 
hypothesis that  . 

The binary test for hypotheses is performed using a test 
function . 

 
1,  
0,    

 
meaning that H1 is in force if the measurement  R and that 
H0 is in force if the measurement  A.  is a disjoint 
covering of the measurement space. 

Hence, a test function  is uniformly most powerful of 
size α if for any other test function  we have 

 
 

1 1  ∀   
 
 To introduce the UMP to Normal distribution, we consider 

the standard normal distribution of the family of Normal 
distribution. Section II contains review of UMP test. In 
Section III, we explained hypothesis testing – uniformly most 
powerful tests. Section IV is devoted to the results in standard 
normal distribution. 
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II. UNIFORMLY MOST POWERFUL (UMP) TEST 
Reference [4] pioneered modern frequentist statistics as a 

model-based approach to statistical induction anchored on the 
notion of a statistical model.  

As  
 

G z , , Ѳ ⊆ ℜ . dim Ѳ  
 
Fishers proposed to begin with pre-specified G as a 

hypothetical infinite population. He estimated the specification 
of G as a response to the question: what population is this a 
random sample? A mis-specified G would vitiate any 
procedure relying on z  or the likelihood function. 
Reference [5] argued for inductive inference spearheaded by 
his significant testing, and [8] argued for inductive behavior 
based on Neyman-Pearson testing. However, neither account 
gave a satisfactory answer to the canonical question. When do 
data provide evidence for a substantive claim hypothesis? 

Over the last three decades, Fisher’s specification problem 
has been recast in the form of model selection problems. The 
essential question, how could n infinite set of all possible 
models that could have given rise to data be narrowed down to 
a single statistical model . These models may be nested or 
non-nested. For non-nested case, see [2], [3], [11], [6], [1], and 
[9]. In the nested case, we consider a parametric family of 
densities and two hypotheses as H0 and H1. When the domain 
of density is dependent on parameter, the theories for 
hypothesis testing and model selection have not developed. 
For the testing problem of type 

 
:    

 
Against 

:   
 
When a class of size-α tests is considered, and the family is 

one-parameter exponential distributions, a uniformly most 
powerful (UMP) test to exist. However, under these 
conditions, a UMP test does not exist for H0:  θ1 < θ < θ2 

against H1: θ < θ1 θ > θ2  H :  θ θ  against H : θ  θ . 
Whereas, if the class of size-α tests is reduced to a class by 
taking only the unbiased test and the family of distributions is 
Polya type, we know that a UMP test does not exist for testing 
problems of the two latter types of hypothesis testing. When a 
UMP test does not exist, we may use the same approach used 
in the estimation problems. Imposing a restriction on the test 
to be considered and finding optimal test within the class of 
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test under the restriction. Two such types of restrictions are 
unbiasedness and invariance. Under some distributional 
assumptions, let the power function of any test φ, , is 
continous in θ. Let us consider a test of size-α unbiased 

 

|   | 0  
 
In this situation the two sided test is  
 

1        
                ;     1, 2

0                     
 

 
where , , ,  are obtained by  α and 

. Such a test is therefore UMP size-α 
unbiased test in for testing  against . Consider a 
family of distribution which it supports is dependent on its 
parameter. In such a situation the UMP test is known for 
uniform and double exponential distributions, see [7].  

III. HYPOTHESIS TESTING – UNIFORMLY MOST POWERFUL 
TESTS 

We give the definition of a uniformly most powerful test in 
a general setting which includes one-sided and two-sided tests. 
We take the null hypothesis to be  

 
: Ω  

 
And the alternative to be  
 

: Ω  
 
We write the power function as Pow(θ, d) to make its 

dependence on the decision function explicit. 
Definition: A decision function d* is a uniformly most 

powerful (UMP) decision function (or test) at significance 
level α0 if  
(1) Pow(θ, d*) ≤ α0, ∀  Ω  
(2) For every decision function d which satisfies (1), we have 

Pow(θ, d) ≤ Pow(θ, d*), , ∀  Ω  . 
Do UMP tests ever exist? If the alternative hypothesis is 

one-sided then they do for certain distributions and statistics. 
We proceed by defining the needed property on the population 
distribution and the statistic. 

Definition: Let T = t(X1, X2, . . . , Xn) be a statistic. Let f(x1, 
x2, . . . , xn|θ) be the joint density of the random sample. We 
say that f(x1, x2, . . . , xn|θ) has a monotone likelihood ratio in 
the statistic T if for all  the ratio 

 
, … |  
, … |  

 

 
depends on ,  …  only through t( , …  and the 
ratio is an increasing function of , … . 

Example: Consider a Bernoulli distribution for the 
population, i.e. we are looking at a population proportion. So 
each Xi = 0, 1, and p = P(X = x). The joint density is  
 

, … |  1  
 
where 

1
 

 
Let we have 
 

, … , |  
, … , |  

1
1

1
1

 

 
So the ratio depends on the sample only through the sample 
mean and it is an increasing function of . (It is an easy 
algebra exercise to check that if 
 

  1 / 1 1.  
 

Example: Now consider a normal population with unknown 
mean  and known variance . So, the joint density is 
 

, … , |  
1

2
1

 

 
Now let μ1 < μ2. A little algebra shows 
 

, … , |  
, … , |  2

 

 
So the ratio depends on , , … ,  only through , and the 
ratio is an increasing function of . 

Theorem 1: Suppose , … , | has a monotone 
likelihood ratio in the statistic , … , . Consider 
hypothesis testing with alternative hypothesis :  and 
null hypothesis :   : . Let ,  be 
constants such that . Then the test that rejects 
the null hypothesis if  is a UMP test at significant level, 

. 
Example: We consider the example of a normal population 

with known variance and unknown mean. We saw that the 
likelihood ratio is monotone in the sample mean. So if we 
reject the null hypothesis when , this will be a UMP 
test with significance level | . Give a desired 
significance level  , we choose c so this equation holds. 
Then the theorem tells us we have a UMP test. So for every 

, our test makes  as large as possible. 
Example: We consider the example of a Bernoulli 

distribution for the population (population proportion). To be 
concrete, suppose the null hypothesis is 0.1 and the 
alternative is 0.1 . We have a random sample of size n = 20. 
Let  be the sample proportion. By what we already done, the 
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test that rejects the null hypothesis when  will be a UMP 
test. We want to choose c so that . However,  
is a discrete RV (it can only be 0/20, 1/20, 2/20,    , 19/20), so 
this is not possible. Suppose we want a significant level of 
0.005. Using software (or a table of the binomial distribution) 
we find that 6/20| 0.1 0.0113 and 
7/20| 0.1 0.0024. So we must take c = 7/20. Then the 
test that rejects the null if 7/20 is a UMP test at 
significance level 0.005.  

What about two-sided test alternatives? It can be shown that 
there is no UMP test in the setting. 

IV. UNIFORM MOST POWERFUL (UMP) TEST 
Let , … ,  be an independent random sample. A 

test φ for testing :  against :  is said to be a 
uniformly most powerful test of size α if it is of size- α and it 
has no smaller power than that of any other test α, in class of 
level α tests i.e.  

0 
 

 
 
and for every , 
 

 
 
The known theorem provided a UMP test of size α for one-

sided testing problem :   against :  , 
whenever the p.d.f of has monotone likelihood ratio. 
The theorem holds for such distributions provided they have 
monotone likelihood ratio in . For testing  against  
and test of the form 

 
1                 

               
0                 

 

 
has non-decreasing power function and is UMP of its size 
provided its size is positive. 

Reference [10] explained that for every , 0  1, and 
every , there exist numbers ∞ ∞  0
 1  and  such that the test given above is UMP size α test 
of  against  . 

Examples of Uniformly Most Powerful Test 
If the same result of MPT test is obtained for UMP by 

changing the composite range : 0 to specified range 
and then consider alternative hypothesis : then the 
result obtained is said to be UMPT. i.e when H0 is simple and 
H1 is composite (one-sided) then a UMPT exist. 

On the other hand, if H0 is simple generally no UMPT 
exists. 

Example 1  
Let X1, X2, . . . , Xn be a random sample of size n from a 

distribution with density 

| , 0
0,  

 
For testing :  against :  where  is 

specified, what is the UMPT? 
Solution 
In this case H0 is simple and H1 is composite. Let  :

 be the simple hypothesis. Then MPT for :  
against :  is given by 

 
|
|

 

 
Since 

 , … ,  
 

 ∑  
 
Therefore 

∑

∑  

 

∑ ∑  

 

∑  

 
Taking the natural log, we have 
 

ln ln ∑ ln  

ln ln ∑ ln  

ln ln ln  

ln ln  

ln ln  

 
Let ln  since ln  is a constant, then we have 

 

 

 

 
Also, let  since   is also a constant, then we 
have 
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Divide through by n, we have 
 

1
 

1
 

 
Therefore,   

 
 
Since the same MPT will be obtained for each simple 
hypothesis : ,   is the UMPT. 

Example 2 
Let X1, X2, . . . , Xn be a random sample of from , 1 , 

find the UMPT for testing 
 

: 0  : 0. 
 
Solution 

:  against : , we want to find a UMPT. 
Here H0 is simple and H1 is composite. Consider a specific 
alternative hypothesis : 0. Then an application of 
Neyman-Pearson lemma to test : 0 against :  
gives 

 

 
1

√2
  

1
√2

  
1

√2
 

 … 
1

√2
 

 

 
1

√2
∑  

 

0
1

√2
∑

1
√2

∑
 

 

0 ∑

∑
 

 
0 ∑  ∑  

 
0 ∑   

 

ln
0

ln ∑   

 
1

2
 2 ln  

 

 2 ln 2  

 

 2 2   

 

 
 2

  

   

 
1

   

 
Therefore 

  
 
where c is determined such that | 0  and not by 

   (hence independent of  and the critical region will 
be the same if we had selected another value of 0. 
Therefore the test given by  is a UMPT. 

Example 3 
Let X1, X2, . . . , Xn be a random sample from 0, . 

Find the UMPT for testing : 1  : 1. 
Solution 
Consider a particular simple alternative hypothesis :

1. Then the MPT for testing  against is given by 
 

 
1

√2
  

1
√2

   … 

1
√2

 

 

 
1

√2
∑  

 

1
1

√2
∑

1
√2

∑
 

 
1 ∑   ∑

 

 

ln
1

ln
∑   ∑

 

ln ln
∑   ∑

 

 

ln
1
2

  
1

2
 

 
1
2

  
1

2
 ln ln  

 
1
2

  
1

2
 

 

  
1

2  

 

  2  

 

1 2  
 

2
1
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where  
2

1
 

 
Observe that as long as 1 the MPT will remain the 

same for each simple alternative hypothesis : ∑
 where c is determined once. α, the probability of type 1 

error, is specified, and independent of . Thus, ∑
|   . Since the critical region is independent of 

, the test obtained here is UMPT. If we were 
testing : 1 against  : 1, it can be verified that 
the corresponding UMPT is ∑ . 

Example 4  
Let X1, X2, . . . , Xn be a random sample from |  where  
 

|
1

,     0, 0 

 
What is the UMPT for testing :  against :
? 
Solution 
Let us consider the alternative  : . Then MPT 

for :  against :  is given by 
 

 
1

  
1

   … 
1

 

 

 
1 ∑  

 

 

 

 

1 ∑ ∏

1 ∑ ∏
 

 

∑  ∑  
∏
∏

 

 

 
∏
∏

 

 

 

 

ln ln  

ln  

 

ln  

 

ln  

ln  

 

 
 

 

 
1

 

 
Therefore, 
 

, Since  0 
 

Since the same MPT will be obtained for each simple 
hypothesis 

 
: , 

 
then 

 is the UMPT. 

REFERENCES 
[1] Commenges, D. , Sayyareh, A.,  letenneur, L. , Guedj, J,  and Bar-hen, 

A, (2008), “Estimating a Difference of Kullback-Leibler Risks Using a 
Normalized Difference of AIC’’, The Annals of Applied Statistics, Vol. 
2,No. 3, pp.1123 -1142. 

[2] Cox, D.R. (1961), “Test of Separate Families of Hypothesis’’, 
Proceeding of the Fourth Berkeley Symposium on Mathematical 
Statistics and Probability, Vol.1, pp.105 – 123. 

[3] Cox, D.R.”  (1962), Further Result on Tests of Separate Families of 
Hypotheses’’, Journal of the Royal Statistical Society, Vol. B, No. 24 
pp.406 – 424. 

[4] Fisher, R.A. (1922), “On the mathematical foundations of theoretical 
statistics”, Philosophical Transactions of the Royal Society Vol. A, 
No.222. pp.309 – 3689. 

[5] Fisher, R.A. (1955), “Statistical Methods and Scientific Induction’’, 
Journal of the Royal Statistical Society, (1989), Vol. B, No. 17, pp.69 – 
78. 

[6] Fisher, G. and McAleer, M. (1981), “Alternative Procedures and 
Associated Tests of Significance for Non-Nested Hypotheses”, Journal 
of Econometrics, Vol. 16, pp.103 – 119. 

[7] Lehmann, E.L., (1986). “Testing Statistical Hypotheses” New York, John 
Wiley, II edition. 

[8] Neyman, J. (1956), “Note on an article by Sir Ronald Fisher”, Journal of 
the Royal Statistical Society, Vol. B, No. 18, pp.288 – 294. 

[9] Sayyareh, A., Obeidi, R., and Bar-hen, A. (2011), “Empirical 
comparison of some model selection criteria”, Communication in 
Statistics Simulation and Computation, Vol.40 pp.72 – 86. 

[10] Sayyareh, A., Barmalzan G., and Haidari, A, (2011), “Two Sided 
Uniformly most powerful test for Pitman Family”, Applied 
Mathematical Sciences Vol. 5, No.74, pp.3649 – 3660. 

[11] Vuong, Q.H. (1989), “Likelihood Ratio Tests for Model Selection and 
Non-Nested Hypotheses”, Econometrica, Vol. 57, No. 2, 307 – 333. 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:10, 2013 

1542International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
10

, 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
71

69
.p

df


