Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor

Authors: Y.Srinivasa Kishore Babu, G.Tulasi Ram Das

Abstract:

This paper presents a comparative study of two most popular control strategies for Induction motor (IM) drives: Field-Oriented Control (FOC) and Direct Torque Control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Block set that allows a complete representation of the power section (inverter and IM) and the control system.

Keywords: IM, FOC, DTC, Simulink

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088516

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489

References:


[1] Bimal K. Bose, Modern Power Electronics and AC Drives, Third impression, INDIA: Pearson Education, Inc., 2007.
[2] B.K.Bose (Editor), Power Electronics and Variable Frequency Drives, New York;IEEE Press:1996
[3] Blaschke F, ”The Principle of Field-Orientation as applied to the New Transvector Closed-Loop Control System for Rotating-Field Machines,” Siemens Review, Vol. 34, pp. 217-220, May 1972.
[4] Depenbrock M, ”Direct Self Control (DSC) of Inverter-Fed Induction Machine,” IEEE Trans. Power Electronics, Vol. 3, No. 4, pp. 420-429, Oct, 1988
[5] Fatiha Zidani, Rachid Nait said, ”Direct Torque Control of Induction Motor with Fuzzy Minimization Torque Ripple,” Journal of Electrical Engineering, Vol. 56, No. 7-8, pp. 183-188, 2005.
[6] Isao Takahashi, and Ohmori Youichi, ”High-Performance Direct Torque Control of an Induction Motor,” IEEE Trans. Industry Applications, Vol. 25, No. 2, 257-264, Mar/Apr., 1989.
[7] Isao Takahashi, and Toshihiko Noguchi, ”A New Quick-Response and High Efficiency Control Strategy of an Induction Motor,” IEEE Trans. Industry Applications, Vol. IA-22, No. 5, pp. 820-827, Sep/Oct., 1986.
[8] Kazmierkowski M P, and Giuseppe Buja, ”Review of Direct Torque Control Methods for Voltage Source Inverter-Fed Induction Motors,” Conf. Rec. IEEE-IAS, pp. 981-991, 2003.
[9] Malik E. Elbuluk, ”Torque Ripple Minimization in Direct Torque Control of Induction Machines,” IEEE-IAS annual meeting, Vol. 1, pp. 12-16, oct 2003.
[10] Marino P, M. D lncecco, and N. Visciano, ”A Comparison of Direct Torque Control Methodologies for Induction Motor,” IEEE Porto Power Tech Conference PPT’01, PORTO, PORTUGAL, Sep., 2001.
[11] Telford D., Dunnigan M. W., and Williams B. W., ”A Comparison of Vector Control and Direct Torque Control of an Induction Machine,” in Conf. Proc., IEEE PESC’00, 2000, vol. 1, pp. 421-426.
[12] Hoang Le-Huy., ” Comparison of Field Oriented and Direct Torque Control for Induction Motor Drives,” in Conf. Proc of Industry Applications, 1999, vol. 2, pp. 1245-1252
[13] K.Hasse, ” Zur Dynamik drehzahlgeregelter antriebe mit stromrichtermespeisten asynchronykurzschlublaufermachinen,” Dramstadt, Techn. Hochsch Diss., 1969
[14] Bimal K Bose, ” High performance control & Estimation in AC Drives,” in conf. Rec.IEEE IECON’97,1997, pp.377-385.