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Fermat’s Last Theorem a Simple Demonstration

Jose William Porras Ferreira

Abstract—This paper presents two solutions to the Fermat’s Last
Theorem (FLT). The first one using some algebraic basis related to
the Pythagorean theorem, expression of equations, an analysis of
their behavior, when compared with power n = 2 and power n > 2
and using " the “Well Ordering Principle” of natural numbers it is
demonstrated that in Fermat equation z ¢ Z* — {0}. The second one
solution is using the connection between n! and npower through the
Pascal’s triangle or Newton’s binomial coefficients, where de Fermat
equation do not fulfill the first coefficient, then it isimpossible that:

z" = x" + y*forn > 2 and (x,y,z) € Z* — {0}.

Keywords—Fermat’s Last Theorem, Pythagorean Theorem,
Newton Binomia Coefficients, Pascal’s Triangle, Well Ordering
Principle.

|. INTRODUCTION

HIS document serves the matter with regard to Pierre de

Fermat: Would be certain his clam that he had a
"wonderful demonstration" of Fermat’s Last Theorem in
1637?[3]:

“Cubumautem in duos cubos, autquadrato quadratum in
duos quadrate quadratos, et generaliter nullam in infinitum
ultra quadratum potestatem in duos eiusdem nominis fas est
divider cuius rei demonstrationem mirabilem sane detexi.
Hanc marginis exiguitas non caperet.” Pierre de Fermat [3]

“It is impossible to decompose a cube into two cubes, a
biguadratic in two biquadrate, and in general any power other
than the square, two powers of the exponent. | found a really
wonderful demonstration, but the margin of the book is too
small to put it.” Pierre de Fermat [3].

Wiles (1995) demonstration uses elliptic curves, schemes of
groups, Hecks’ Algebra, Iwasawa theory, Von Neumann-
Bernays-Godel” theory, Zermelo-Fraenkel’ theory and others
complex mathematical tools, al developed many years after
Fermat’s lived [7]. This document shows a short, simple
demonstration using procedures known in the 17th century.

IlI.FERMAT’S LAST THEOREM

Fermat's last theorem or Fermat-Wiles’s theorem is one of
the most famous theorems in the history of mathematics [3]
and [6]. The search for a demonstration spurred the
development of algebraic number theory in the nineteenth
century and the proof of the theorem of modularity in the
twentieth century. Using modern notation, Fermat’s last
theorem can be stated as follows:

If n isan integer greater than 2, then you cannot find three
natural numbers x, y and z such equality ismet (x,y) > 0 in:
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x"+yt =2z

Pierre de Fermat (1667), showed the case of n=4, using the
infinite descent technique [5]; Leonard Euler (1735),
demonstrated the n=3 case confirmed in 1770 [8]. Later
Germain stated that if p and 2p+1 are both primes, then the
expression for the power Fermat conjecture p meant that one
of the x, y or z would be divisible by p [8]. Germain tested for
number n<100 and Legendre, extended their methods for
n<197 [8]. In 1825, Dirichlet and Legendre, extended the case
of n=3to n=5. More recently, Lame (1839), proved the case of
n=7[8].

A. The Graph of Fermat’s Equation

Fig. 1 shows a representation of Fermat’s equation, built
dividing the equation by Z', transforming:

xﬂ +yil’1 — Z?’l
To the equation:

&+ pr =1,
where:

¢=and =~

E'N._t_Bll — 1."-_’00

Bls
£4p° =1 g =2
§2+ 2 _ K g,_f
§+p=1 | ’
¢

Fig. 1 Graphical representation of Fermat’s equation

Three eguations can be extracted from this graph:
1. Theequation of the straightline £ + 8 =1,forn=1
2. Theequation of thecircle §2 + g2 =1, forn = 2
3. Fermat’s Last Equation in the form " + " =1, for
n>2

[1l. PYTHAGOREAN TRIPLETS
A primitive Pythagorean is composed of three integers (X, v,
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2) such that x% + y? = z2. Although the Babylonians knew
how to generate such triads in certain cases, the Pythagoreans
extended the study of the topic finding results as. "any odd
integer is a member of a primitive Pythagorean triple" [3].
However, the complete solution to this problem was not
obtained until the 13th century when Fibonacci found a way to
generate all possible Pythagorean triples[2].

There are different ways for generating primitive
Pythagorean triples [1], [2] and [4], but we show another way
of finding Pythagorean triples (X, y, Z) below.

Applied to right triangles of sides and hypotenuse whole,
Pythagorean theorem establishes that the following equation:

X+ y2 =2 D

It is satisfied by natural numbers (x, y, 2) >0

In (1), one of the two variables (xor y) must be larger than
the other and they cannot be the same, because when they are
the same would be z% = 2x% = 2y% and z would not be a
natural number, (the square root of two is an irrational number
with an infinite mantissa, which continues to be irrationa by
multiplying it by a natural number).

Assuming that (x < y) then z must be greater than y (z >
y) to make equation (1) solution, i.e, z>y>x, and
therefore, we can write:

z=y+m = meZ'—-{0} (2)
wherex > m > 0. If m equal to or greater than x, Equation
(1), would have not solution with (2).

Fig. 2 shows a graphical representation of this equation.

Fig. 2 Graphic representation of (2)

Theorem 1:
In(l)and (2) m < x
Proof:
L. z>y>%x z=y+m=x?+y?=(y+m)?=
z%, (x,v,z,m) € Z* — {0}
2. Supposem= x> 0=>m= x4+ u, u=0
3. X=2yM+ NP, According to 1.
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4. x2= 2y(x+u) + (x+Uu)2... substituting into 3., mfor x +

U et According to 3.
5. X=2yx+2yu+ X2 +2xu+ A......... According to 4.
6. 0=2yx+2yu +2xXu+U2............. According to 5.
7. 2yx =— 2yu —2xu — W2 and this is an absurd (a

positive number cannot be equal to a negative or O
when u > 0).
8. Therefore, assumption 2 isincorrect.
.............................................. According to 7.
9. Therefore: M< X...coooooviiiiiiiiiiinnn. According to 8.

Q.E.D.

In (2) according to the Good Ordering Principle, m must
contain a minimum element within the natural numbers and to
be of first grade it must be met for al m > 0, being their
lowest element number 1. Additionaly with m > 0, it is
possible to find al Pythagorean triples, because z would be
among the natural numbers, other values of m ¢ Z* — {0},
would also givez ¢ Z* — {0}.

Replacing (2) in (1) would be:

x2+y?=(y + m)?=y?+ 2ym + m?

(¢—np)/(2m) =y (©)

Primitive Pythagorean triples of x,y and z with odd x, are
found, replacing m=1in (2) and (3), leaving:

z=y+1 (4)

©)

Primitive Pythagorean triples of x, y and z with even x, are
found, replacing m=2in (2) and (3), leaving:

z=y+2 (6)

)

Equations (4)-(7) let us find primitive Pythagorean triples
a, b and ¢, where a, b and ¢ values correspond to the values
found for x,y and z, respectively, with these equations and
(a, bc)EZT.

Larger bases x,y and z as Pythagorean triples are
calculated using (8), with k>1, keZ* and a, b and ¢ are
primitive Pythagorean triples. With odd a, m = k and with
evena, m= 2k:

(ak)? + (bk)? = (ck)? = z? ©)

Tables| and I, shows examples of the above:

YFrom latin - Quod erat demonstrandum
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TABLEI
PRIMITIVE PYTHAGOREAN TRIPLES AND LARGER BASESWITH ODDx = a

Primitive Pythagorean triples odd xk=1 (m=1 (4) and (5))

x a3 a5 a7 a9 a-ll a=13 a=15 a=17 a=19

b=4 b=12 b=24 b=40 b=60 b=84 b=112 b=144 b=180

z ¢=5 c=13 =25 c=41 c=61 =85 =113 c=145 c=181
Larger Pythagorean triples: (8) k=2 (m=2 (8)

6 10 14 18 22 26 30 34 38

8 24 48 80 120 168 224 288 360

z 10 26 50 82 122 170 226 290 362
Larger Pythagorean triples: (8) k=3 (m=3 (8))

X 9 15 21 27 33 39 45 51 57

12 36 72 120 180 252 336 432 540

z 15 39 75 123 183 255 339 435 543
Larger Pythagorean triples: (8) k=4 (m=4 (8))

x 12 20 28 36 44 52 60 68 76

16 48 96 160 240 336 448 576 720
z 20 52 100 164 244 340 452 580 724
TABLEII

PRIMITIVE PYTHAGOREAN TRIPLES AND LARGER BASESWITH EVEN X=A

Primitive Pythagorean triples even x,k=1 (m=2 (6) and (7))

X a=6 a=8 a=10 a=12 a=14 a=16 a=18 a=20 a=22 a=24
y b=8 b=15 b=24 b=35 b=48 b=63 b=80 b=99 b=120 b=143
z c=10 c=17 c=26 c=37 c=50 c=65 c=82 =101 c=122 c=145

Larger Pythagorean triples: (8) k=2 (m=4 (8))

x 12 16 20 24 28 32 36 40 44 48
16 30 48 70 96 126 160 198 240 286
z 20 34 52 74 100 130 164 202 244 290

Larger Pythagorean triples: (8) k=3 (m=6 (8))

x 18 24 30 36 42 48 54 60 66 72
24 45 72 105 144 189 240 297 360 429
z 30 51 78 111 150 195 246 303 366 435

Larger Pythagorean triples: (8) k=4 (m=8 (8))

X 24 32 40 48 56 64 72 80 88 96

This method is simple but very valuable. For example with
x= 24, there are only four solutions of x<y with natural
numbers so that z is a natural number and y=143, 70, 45, 32,
and z=145, 74, 51, 40 respectively, all values obtained with
(4)-(8), (see numbers highlighted in black in Table II),
solutions with m=2, 4, 6, 8 all dividers of 24. Vaues x>y and
z as a natural numbers are equivalent and give the same z, just
as if it had been z? = y? + x? where x >y, for example
x=24, y=18, z=30 is equivalent to y=24, x=18, z=30 but they
have not been taken as solutions because x >y, (x < y has
been always considered). Although m=12 is a divisor of 24
and solves x=24, y=18, z=30 it also corresponds to a similar
Pythagorean triple of x=18, y=24 and z=30 with m=6.

There are other primitive Pythagorean triples (shown in [1],
[2] and [4]) which can also be obtained with m>2 (3) or with
following equations:

Xe+yR=22_x=2UV, y=U2—\2, z=U2+\2, (for these equations
m=2v2) 9

where u and v are prime numbers together, one of them is even
and the other odd.
Example with m=8 from (9):

x=20, y=21, z—y=m=8=2, v=2, u=20/4=5 andz =
u?+v?=5*+22=29=y+m=21+8

Table 1l gives some examples:

y 32 60 96 140 192 252 320 396 480 572
z 40 68 104 148 200 260 328 404 488 580
TABLEIII

EXAMPLES OF PRIMITIVE PYTHAGOREAN TRIPLESWITH SEQUENCES OF PRIME NUMBERS, ONE OF THEM EVEN ACCORDING TO (9)

Primitive Pythagorean triples with sequence of prime numbers

m=8 v=2,u=7 v=2,u=11 v=2,u=13 v=2,u=17 v=2,u=19 v=2,u=23
X 28 44 52 68 76 92
y 45 117 165 285 357 525
z 53 125 173 293 365 533
m=8 v=2,u=29 v=2,u=31 v=2,u=37 v=2,u=41 v=2,u=43 v=2,u=47
X 126 124 148 164 172 184
y 837 957 1365 1677 1845 2205
z 845 965 1373 1685 1853 2213

For cases where u and v are primes and both are odd,
primitive Pythagorean triples can be obtained using the
following equations:

X+y?=72 = X=uw, y= %(UZ—V"’), 7= %(u2+v2), (for these
eguations m=\v2) (10

For al numbers x, y that are not within Pythagorean triples,
z is irrational with infinite mantissa. Its calculation comes
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from aroot of 2, (z = 3/x? + y?), that means m from (2) is
irrational with an infinite mantissa (x,y)> 0 and natural
numbers. Therefore:

z(irrational with infinite mantissa)= y(natural number) +m
(the mantissa must be also infinite).

Another important analysis is that £ and § remain constant
both for primitive Pythagorean triples, as its projection in the
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larger Pythagorean triples:

&= xz= (XK)/(zk) = akick = alc
B=y/z =(vk)/(zk) = bk/ck = b/c

The importance of (2) and (3) is that any primitive
Pythagorean triple can be found easily. By using the Good
Ordering Principle of natural numbers, the minimum elements
of (2) and (3) inside the set of natural numbers would be:x =
3, y=4, z=5and m = 1. Additionally with (2) and (3)
can be formed any right triangle sidesx = +/a where a > 3
and odd number, y > 1 and z = 2 where (x2,y,z,m=1) €
Z* — {0} and x ¢ Z* — {0}. The resulting equation has the
same form of (1), i.ez? = x?+ y?, but here z > x > y and
z=y+m=y+ 1. This is important, because it helps
showing that Fermat’s Last Theorem is true in a simple way.

IV. SOLUTION FOR FERMAT'S LAST THEOREM

A.First Solution

A solution using z=y+q to solve z™ = x™ 4+ y™, for n>2,
similar to the procedure followed to find primitive
Pythagorean triples, in the previous chapter, demonstrating
that z ¢ Z* — {0} isasfollows:

Theorem 2

In equation x™ + y" = z," is always true that: (z, for

n = 2)>(z, for n>2)=z,_, € Z* — {0}

n

Proof:

1. x"+y*=z,"forn>1

2. Let’s z, the solution of z,% = x? + y2for n = 2and z,
the solution ofz,™ = x™ + y™"n > 2and assuming that
Z, issolution of z,= (x?%, y?)e Z* — {0}

3. 22 E Z+ - {0}

4. z P =x2+yi =22 According to 2.

5 x"+y"=1z,%z,""2...........According to 1, 2, 3and 4.

6. X" +y"=(*+yHz,"? ... According to 4 and 5.

7. x"2x2 4 g2y = g M-2x2 4 7 ""2y2According to
6.

8. X"z, iy According to 7.

9. XLZu <Y et According to 8.

10.2," = 2z,%z,"? < 2z,%z," % = z,".. Accordingto 9.

11,2532, oo According to 10.

Q.E.D.
Corollary one: In the equation:
z," =x"+y"forn>1
always: z,—1 > Zp—g > Zp—3 > Zy—g4 > Zp—s ...
(Zn=1,Zn=2) € AL {0}

Corollary two: The theorem 2 also applies to equations
72 =x>+y?> whee (x% y?, z?)€Z"—{0} and
(x or y or both) & Z* — {0}, because x"2<z," 2<y"2
Theorem 3
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z" = x"+y"=x,y > 0 and coprimes,n
> 2,(x,y,n) € Z* — {0},
z g Z" — {0}
Proof:

1. Assuming that equationz™ = x"+y", has integer
solutions, wheren > 2, (x,y,z) € Z* — {0} and (x,y)
are coprimes.

2. Assuming one of the variables (xory) is smaler than the
other (x < y). It can not be the same because it leads to
z = "2x therefore z # Z* — {0}).

3. Thenx<y<z.....ooeceeen.. According to 1 and 2.

4. |If z hasinteger solutions we can do:

z = y + q, where g must be an integer number, but g < m
(theorem 2)

Zt=x"yt =+t =y A p gt

pr+q"=x" (11)

n-1

P = Z (6 NoRnEag

k=1

>1<k<n-1

n n!
and (4) = (n—k)!
From (11) it is clear that ¢ < x and we are assuming q
isinteger number.

5. From3:
y=x+s =2se€Zt-{0}

Y=+ =x"+p; +s"
n-1

pzzz:(:)x“*ksk >1<k<n-1

k=1 I'
T n:
and (4)) = (n—k)!
y" =% = Pz st (12)
6. Looking (11) and (12), both have the same form because
in (11) it has assumed that gis integer (only differ isin
the name of variables), that meansif p;+q™=x" then:

pz +SF1 — t?l _— y?l _x?’l
yr=x"+t" (13)

7. Equation (13) has the same form of the Fermat’s equation
z" =y" +x™ but with even lower values (y < z) which
leaves us in the path of the infinite descent, (if thereis a
minimum integer, then with (13), would be another minor
integer, which contradicts the well-ordering principle of
the natural numbers, therefore z ¢ Z* — {0} and also
t ¢ Z* —{0}.
Applying Theorem 2 and the well-ordering principle of
the natural numbers:

Starting with the original equation (Fig. 3):

z,"=x"+y'=2(x<y)eZ" - {0n>2
2,2 =x*+y?

©
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z, > z, (theorem 2)

Zl=x2+y’ >z, =y+q
(x,%,y,%)must beinside of Z* — {0} if not z,, & z* — {0}
Zo" =22, = (4 2+ D" =, = x4 bl

By the well-ordering principle of the natural numbers, z,
must have a minimuminteger solution, then it is necessary to
look the minimum solution inside of:

z,? = x% + y,?
There are four cases:
a (x,y,) ¢ Z" —{0}but(x,% v,%) € Z* — {0}
The minimum solution forx; < y;is:

x; = v/2andy, = /3, therz,?> = 5, but z,, ¢ Z* — {0} because
V5 isirrational.

x; =+2andy, =7 then z,2=9, z, =3 but z," = 32-
3" 22z, " = x" + y™ with x = [1,2] and ¥ = [2,3] then
z, for z,™ = x™ + y™ is irrational (don’t have a minimum
solution)

b. x; & Z" — {0}but(x,*, y;,¥1%) € Z* — {0}

The minimum solution forx; < y,is:

x =+2and y, =3, therz,?=11, but
because V11 isirrational.

x, =v2andy, =7 then z,2=9, z,=3 but z," =32
3" 2%z," = x™ + y™ with x = [1,2] and y = [2,3] then
z, for z,™ = x™ + y™ is irrational (don’t have a minimum
solution)

c. y; € Z" —{0}but(x,, x,% ¥,%) € Z* — {0}

The minimum solution forx; < y,is:

x; = land y; = /2, thenz,? = 3, but z, ¢ Z* — {0} because
V3isirrational.

x; = 2andy, =7 then z,°=9, z,=3 but z," =3%-
3n2zz " = x" + y" with x = [1,2] and y = [2,3] then
z, for z,™ = x™ 4+ y™ is irrational (don’t have a minimum
solution)

d. (x;,y1) € Z* — {O}then(x,%,y,%) € Z* — {0}

The minimum solution forx; < y;is:

x, = 3andy; = 4, thenz,* = 25, andz, = 5, but:

z," =5-5""%%z," = x" + y"withx = [1,2,3] and y=
[2,3,4] then z, for z," = x™ + y™ is irrational (don’t
have a minimum solution)

That means the Fermat’s equation z," = x™ + y™ must not

have minimum solution where (x,2 + y,2) € Z* — {0}

9. Therefore it assumed in 1 is false and Fermat’s Last
Theorem is demonstrated, because z ¢ Z* — {0}

7z, € Z" — {0}
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Forn=2, z —y+m=2°*=x*+y*
Forn=>2, z,® = x" +y"
Zn =Y+ 422" = x "+ yy”

Fig. 3 Graphic representation of Fermat’s equation z,,™ = x" +
yh () EZT —{0} x>y n>2

The following graph shows a comparison between the
Pythagorean equation 2,2 =x?+y?> = (y+m)? and
Fermat’s equation z™ = x" +y" = (y + q)" for n > 2.

Circle of radius v

/

z=y+q forn=2
zZ,—y+mforn=2

Fig. 4 Graphicwhere z=y +¢q and z; =y + m with 7,2 =
(yv+m)?=x*>+y?and z" = (y+ q)" = x" + y™ for n>2

Fermat’s Last Triangle

Fermat”s Last Theorem can be showed as a triangle of sides
(x,y,z =y + q), when joining the straight lines x,y and
z=y+gq, and where 60°< 2 < 90° (2 is the angle
opposited to side z = y + q). Thistriangle, has been named as
Fermat’s Last Triangle in his honor. A graphic representation
is shown in Figure 5. Here z? = x? + y% — 2xycosQ. Only z
could be a natural number when 2 = 90° and (x, y) belong to
a Pythagorean triples, condition that never fullfills z =

“x" + y", because z < z,.

1SN1:0000000091950263
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* n n n
- ™ -0 A 7= |||'x
~ - n i
z=y+q ‘\
= . Al
¥ ¥ z; .
\ y k)
N kY
Z=y+m| \ 4
I'I Q .'I
% X ﬁ 4"‘; X %
Forn=2 z,=y+m ﬂ Fcrm_at’s Last Z y
S Triangle
Form=>2 z=y+gq

Ya
z? = (¥ + q)?=x? + y? — Zxycos
60" <0<90”
05>cos0)>0
x Q
Fig. 5 Graphic representation of Fermat’s Last Triangle <—— Xa —> Xb
The Fermat’s Last Triangle is part of Scalene Triangles. See < X >
Fig. 6. = gl el =T S £ < O0°
Fig. 7 Graphic representation of Fermat’s Last Triangle to verify the
Equilateral Right theorem 3
Triangle Tvpes of Triangles Iriangle
Analyzing the two right triangles that form the Fermat's
yzing g g
) Last Triangleit is possible to demonstrate that:
Fermat’s Last Triangle + . +
R zg L' —{0}2z>y>x with(x,y)€z"—-{0} and
b 7= Xyt coprimes.
z=y=2x =1 =60 J-L 0=90° Proof:
!I"slu'i:l‘:glf: Obtuse l Awmlng (Z’ xa’ xb' yﬂ) = Z+ = {0} 2
Triangle 22 s va +ya2 and y2 o xb2 +ya
i i e
=¥ y x=x.+x5 = x>=x2+x,2 + 2x,%
EEEE 0 zt 4yt =x% = 2x,%, + Zya_z
1>y>x z>y>x ximzi 4yt 2(x,x), —¥,%)
F-y>x 60° < 0 < 90° 180°>(1 = 90° . . . -
600 = 1 - 90° S Mo This equation to have an integer solution, x must be:x >
= F acalene Iriangles .. .
z >y, but it is not the Fermat’s Last Triangle, thenz ¢ Z* —
/\ {0}
z y . . .
x 0 Examplesaregivenin Table IV and Fig. 7.
- X=Z =y
oo o 60°>0>0 TABLE IV

EXAMPLES FOR EQUATION:
x2 =224 v% + 2(xax, — Vo)

Fig. 6 Typesof Triangles

Va 24
X 32 32 32
Verification of Theorem 3 inside of Fermat’s Last ¥ 40 40 40
Triangle Xq 45 70 143
InFig. 7, there are the following three triangles: B Sl 7 145
1. Fermat’s Last Triangle sides x, y, z = ’W:ﬂ > 2 ol Lt 102 1n
2. Right Triangle with sides X, Y,z = \x" +y"=z >
Ya > g z >
3. Right Triangle with sides x;,, v, ¥ 2 ¥ > yq > X3 Ya
Xg xp

X

Fig. 8 The Triangles formed with x? = 2z + y? + 2(x,x; — V,) and
(x: YV, Z, Xg, Xp, yu) €Zt - {0}
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2. Assuming (z, x4, x5) €Z*—{0} and y, ¢ Z* — {0}
(irrational number)buty,? € Z* — {0}.
722 = x,% + y,% and y?* = x,° + 9y, . There is only
one integer solution with y,? at the same time(y =
z) and correspond to Isosceles Triangles (Fig. 5).
Other solutionz ¢ Z* — {0}.
3. Assuming (z € Z* — {0}, (x,, y.) € Z* — {0} (irrational
numbers), but (x,?%, y,?) € Z* — {0}Then:
Y =224y,
Xg =X—Xp
Xl =x2=2x-x, +x,° = x,2 ¢ 7" - {0}
722 = x> +y, >z ¢ 1" — {0}
4. Assuming (z € Z* — {0}, (x,, x,) € Z* — {0} (rationa
numbers):

d+e d e d e
XxX=—=—-+4-= = x, = -andx, = -
c c+c Xa + Xp a c b=
e
- have

Bl _ s 7 2+ 2 _[t
Y =X +ya L Ya :ya_co

integer solution then:

d 2 2
#=( +()
¢ c
B
N c
. Ja+f2 . - .
The solution z = ——isnot the minimum solution,
[eZ172
there is another y = X" then
z ¢ 7" — {0}
5. There are no more possibilities to be studied then:
z ¢ 7" — {0}
Q.ED.

B. Second Solution

This section will show another analytic proof that shows
that Fermat’s last theorem is true.

Relationship between n power of a number and the n!
(factorial number), which allows the demonstration of the
Fermat’s Last Theorem.

The author found a relationship between any natural
number (x > 0) raised to a power n> 0, (x"), and their
corresponding n factorial (n!), where x and n are natura
numbers.

Table V shows how this relationship was found. In this
table is possible to see how power n keeps a close relationship
with n!. Table IV shows that the power of a number for x > n,
will aways be n! in the column n + 1(power 2 gives 2! that is
2, power 3 gives 3! that is 6, power 4 gives 4! that is 24,
power 5 gives 5! that is 120, power 6 gives 6! which is 720
and so on). Boxes highlighted in Table IV, shows another
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interesting relationship: they contain rows and columns of n

by n and initslower right corner always will be n!.

Table V was constructed as follows:

e xisthe number toraiseto power n.

e  Thefirst column of nis x™.

e  The second column of n is the difference between x"and
(x — D", that means{x™ — (x — 1)"} .

e The third column of nis constructed similarly to
differences in the values found in the second column of n,
that means [x™ — (x — 1)"] — [(x — )" — (x — 2)"] and
so on until columnn + 1.

e The bottom of the column n+ 1 is always n! from the
row x = n.

The coefficients of x™ a(x—1)" b(x —2)" c(x —
3, d(x —4)", ..., asaresult of this operations, a polynomial
up to n! will be generated where coefficients (a, b, ¢, d, ....) of
the polynomial would be givenin Fig. 9.

Coefficients
1
1-21
1-33 -1
14 641
1-510 -10 5 -1
1-6 15-20 15 -6 1
1-7 21 -35 35 -21 7 -1
1-828 -5670 -56 28 -8 1
1-9 36 -84 126 -126 84 -36 9 -1

LoodOoOUV B WM =D

Fig. 9 Pyramidal representation of coefficients a, b, ¢, d... of the
polynomial series until n!
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TABLEV
RELATIONSHIP OF 11 POWER WITH N!
X n=1 n=2 n=3

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 2 1 4 3 2 8 7 5
3 3 1 9 5 2 27 19 12 6
4 4 1 16 7 2 64 37 18 6
5 5 1 25 9 2 125 61 24 6
6 6 1 36 | 11 | 2 216 91 30 6
7 7 1 49 | 13 | 2 343 127 | 36 6
8 8 1 64 | 156 | 2 512 169 | 42 6
9 9 1 81 17 | 2 729 217 | 48 6
10 10 1 100 | 19 | 2 1000 | 271 | 54 6
X n=4 n=5

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
2 16 15 14 | 13 | 12 32 31 30 29 28 | 27
3 81 65 50 | 36 | 23 243 211 180 150 | 121 | 93
4 256 175 | 110 | 60 | 24 | 1024 781 570 390 | 240 | 119
5 625 369 | 194 | 84 | 24 | 3125 2101 | 1320 | 750 | 360 | 120
6 | 1206 | 671 | 302 | 108 | 24 | 7776 4651 | 2550 | 1230 | 480 | 120
7 | 2401 | 1105 | 434 | 132 | 24 | 16807 | 9031 | 4380 | 1830 | 600 | 120
8 | 4096 | 1695 | 590 | 156 | 24 | 32768 | 15361 | 6930 | 2550 | 720 | 120
9 | 6561 | 2465 | 770 | 180 | 24 | 53043 | 26281 | 10320 | 3390 | 840 | 120
10 | 10000 | 3439 | 974 | 204 | 24 | 1E+05 | 40951 | 14670 | 4350 | 960 | 120

Taking this relationship of the polynomial as an eguation,
can be expressed as follows:

i(—l)" G:) (x—k)*=n! where (:)
k=0
n!

T K-k (14)

The factor (-1) of (14) isto indicate that alternate the signs
of the coefficients: (:) These coefficients are exactly
Newton's binomial coefficients of:

n

> (1) (E) a""d=(a—d)" where (:)

k=0
n!
T K- k) (15

Or, in the following equation:

n

Z (D a"~d=(a+d)" where (:)

k=0
n!

T K-k (16)

The only difference is that the coefficients of (16) are all
positive, while the coefficients of (14) and (15), have
aternating signs, starting with the positive sign.
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This relationship of the coefficients of (14), (15) and (16) is
because we can always get exactly the root n of a”, (a — b)"
or (a + b)™, or when an equation in polynomia form contains
those coefficients in the same way. Later it will be showed
that Fermat’s equation does not contain these coefficients in
the same way.

Theorem 4

For any natural number c that is between x™ and (x + 1)"

itsnroot isirrational, where x € Z* — {0}

Proof:

1. Let c be the integer that is in: xn<c<(x+1)» where X
€ Z" —{0}

2. Ifz=%¢

3. =gl s According to 2.

4 x"<zZ"<(x+ D" According to 1 and 3.

5, x<z<(x4+1) oo According to 4.

6. zwill be a radica (comes from the n root)
......................................... According to 4 and 5.

7. Assume that the solution of z = V¢ = E where % is an
irreducible fraction (a and b are coprime factors), where
(a,b) € Z* — {0}.

8. Raising to the power n is obtained: z" =c= (%) =

a n
5)

9. Ifb=1thenz™ = c = a", but then z = a,but it would be

contrary to that found in 5.

If b # 1, thenc is not natural number, which contradict to
1.

10.
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11. Therefore, ¢ is not a perfect power forn> 1, (V¢ #
racional number), then, its n root is irrational.
According to 9 and 10

Q.ED.

Corollary 1: then root for n > 1 of aprime number will be
awaysirrational.

Corollary 2: the numbers that are between x™ and (x +
1)™for n = 1 not comply with (11)

Corollary 3: the n root of an integer ¢ which is not a
perfect power of another integer number isirrational (a = Ve
— aisirrationa).

For example, for n =2, 99 do not comply (with x =
9,x*=92=81, and (x+1)=9+1=10,(x+1)?=
10% = 100, 81 < 99 < 100), and to build Table IV with 99
instead of 100 (107), it fails that n! = 2, so the root 2 of 99,
would be an irrational number. (Y99 = 9,949874371 ....)

9 <9,949874371 ....< 10

Any natural number ¢ that have the exact n root, can be
expressed by (12) or (13), where the coefficients correspond to
Newton’s binomials and also fulfill (11):

If z= "¢, where zisa natural number

zZ"=c
z = a + d, wherea and d are natural numbers

Z"=((a+d)"=c

n

a=3 e

=0

|
where (:) = @ﬁ

The coefficients structure is exactly equal to Pascal’s
triangle asin Fig. 10.

Coefficients

il
i T |
1 = R i |
1 g6 401
o [ty 0 i N0 i
o SEEE 3t 3 o i 1S i |
o R e e+ s o e i
(L e i S Bt 6 A o i B i)
LSS 6 iS4 12 BN &S 136 1O il

L oOdoOuUv b WK 3

Fig. 10 Newton’s binomial coefficients or Pascal’s triangle

If z is not a natural number, it cannot be expressed as the
sum of two integers. If z™, is anatural number to be expressed
in the form of Newton’s coefficients where z™ = (a + b)", it
must contain the same coefficients of Newton’s binomial,
(14), or (15) and (16), i.e. the power n of the sum or difference
of two natural numbers.

Equation (16) can be written in the following form:

zZ'=a"+p+d" a7
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|
where (:) = ﬁ

n—-k
p= (o
k=1

Equation (17) complies with the structure of Newton’s
binomia coefficients and the structure of the coefficients of
(14) and therefore z will be a natural number.

In the case of Fermat's Last Theorem it is through the
smple fact thatz"™=x"+y", cannot be expressed
maintaining the structure of Newton’s coefficients for n > 2.
The first coefficient is 2, therefore z would not be an integer,
thus also proving Fermat's Last Theorem (it cannot meet (14),
(15) or (16)).

Reviewing these concepts in Fermat’s Last Theorem:

zh=x"+y" (18)

where (x,y) >0 and natural numbers,
n> 2.

Proof:

Assuming X<y

z ¢ Z* —{0} for

y=x+ s, wherese Z* — {0}
Y= (x+s)"
yr=x"+p+s" (19)
n-k

!
p= Z (E) x"~s where (:) = M=KD (nn_ K

k=1

Note that the structure of Newton’s binomial stays in (16)
and root n of y™ would be exact, i.e., has not changed and
remains a natural number.

Replacing y™ from (19) into (18) we have:

Zt=x"+x"+p+st=2x"+p+s"
z"=2x"+p+s" (20)
The first coefficient of x™ is not 1, it is 2 in (20), the
structure of Newton’s binomial coefficients in this equation is
no longer equal to the structure of the coefficientsin (14), (16)
or (17) to make root n of z™ exact and thus zwould not be a
natural number. If z was anatural number, it would be saying
that /2x™ + p + s"(Ec. 20) and \/x™ + p + s™ (Ec. 17), are
the same and between these two equations there is a
contradiction: the polynomial equation given by Newton’s
binomial and the basic principle of the connection of n with n!
through Newton’s binomial coefficients, indicate that the first
coefficient is 1 and not 2. This also proves Fermat's Last
Theorem.

V.CONCLUSION

The known standard method to find primitive Pythagorean
triples, is that of the succession of prime numbers, (9) and
(10). Exploring another method of demonstration of
Pythagoras’s Theorem, employing equation z = y + mfor
n = 2, primitive Pythagorean triples can be obtained when m
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is a natural number, (1,2,3,4...=©). Comparing them with the
method of succession of prime numbers, it could be
established that is easier to employ z = y + m, because in a
very simple form it could compute any primitive Pythagorean
triple ordered for any even or odd x. By applying this method
inasimilar way for n > 2, and using the mathematical Well-
ordering Principle in natural numbers, the demonstration of
Fermat's Last Theorem was possible.

The formation of Fermat’s Last Triangleis shown and the
verifications of Theorem 3 inside of Fermat’s Last Triangle
sides (x,y,z) with(x,y) € Z* — {0} theyall meet:z ¢ Z* —
{0}.

Furthermore, using the connection of n! with (a+ b)"
through Newton’s binomial, for n > 2 the demonstration of
Fermat's Last Theorem was a so shown.
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