
 

 

   
Abstract—The Continuously Adaptive Mean-Shift (CamShift) 

algorithm, incorporating scene depth information is combined with 
the l1-minimization sparse representation based method to form a 
hybrid kernel and state space-based tracking algorithm. We take 
advantage of the increased efficiency of the former with the 
robustness to occlusion property of the latter. A simple interchange 
scheme transfers control between algorithms based upon drift and 
occlusion likelihood. It is quantified by the projection of target 
candidates onto a depth map of the 2D scene obtained with a low cost 
stereo vision webcam.  Results are improved tracking in terms of drift 
over each algorithm individually, in a challenging practical outdoor 
multiple occlusion test case. 
 

Keywords—CamShift, l1-minimization, particle filter, stereo 
vision, video tracking. 

I. INTRODUCTION 
HE CamShift tracking algorithm, an adaptation of the 
Mean Shift algorithm, is a well established iterative 

kernel-based algorithm known for its efficiency and 
effectiveness in tracking targets in a sequence of video frames 
[1].  It works by matching the color histogram of the target to 
an image patch in each frame. However, it is well recognized 
that because features tracked are color based, it does not 
perform well under severe illumination changes, occlusion, or 
when multiple objects or portions of the background have the 
same color histogram as the target [2]. 

Improvement and variation of the CamShift tracking 
algorithm is an active area of research. Recent work includes 
combination with particle filters [3], motion segmentation [4], 
silhouette detection [5] and feature matching [6]. The work 
presented here builds on the novel idea of combining the two 
major classic methods of tracking, namely kernel-based and 
state space-based methods, but using recent extensions of 
both. We employ depth  information  using stereo vision with 
CamShift, as recently proposed in [7] and for the state-space 
approach, utilize  the new development of application of 
sparse sampling to tracking with particle filtering [8]. 

Within a typical tracking sequence there are invariably 
portions where one or the other algorithm is better suited. We 
employ a hybrid scheme which is seen to outperform either 
algorithm on its own. The main contribution in this work is the 
combination of the CamShift and l1-minimization algorithms 
in a particle filter framework, to create a robust-to-occlusion 
hybrid tracker that takes advantage of the efficiency of the 
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former and effectiveness of the latter in adapting to 
appearance changes of the target. The novelty of the algorithm 
is in adopting a hybrid scheme and in using depth 
measurements for drift and occlusion detection, in order to 
transfer control from one tracker to the other. The interchange 
scheme operates by projecting the target candidates in the 2D 
frame sequences onto a depth map generated separately for the 
static field of view. The depth map, covering the background 
of the same field of view as the 2D camera, need only be 
measured once for a fixed camera position. Stereo vision, 
utilizing a low cost 3D webcam, was used to generate the 
depth map. Other depth sensors could also be used. 

II.  BACKGROUND 
A.  CamShift 
The CamShift algorithm essentially adaptively updates the 

Mean-Shift (MS) algorithm target candidate window size. 
Since the region being tracked can change in location, 
appearance and size between frames, the MS algorithm is used 
as a way to converge from an initial guess for location and 
scale to the best match based on the color-histogram 
similarity. Note that these algorithms are more general, and 
can track any kind of feature, but color is the most popular [9]. 

In general, for a given image (or a sequence of images), 
spatial locations, color, texture, motion or parameters of 
curves or surfaces, extracted from local neighborhoods, can be 
mapped into a space.  Significant features then correspond to 
high density regions in the space. That is, n observations 
{ } nix …1  in d-dimensional Euclidean space dℜ  can be seen to 

be drawn from an unknown pdf f . While the feature space 
may have irregular data clusters, it is seen that the modes 
(local maxima) of the underlying f  provides a reliable 
method for determining the cluster centers of the features [10].  

For low to medium data sets, estimating the pdf f̂  through 
the kernel estimation method appears a good practical choice 
(ibid.). 

For real time tracking of non-rigid objects, MS iterations 
are used to find the most probable target position in the current 
frame. Essentially, the MS algorithm is an iterative, gradient 
ascent method for finding the local maximum of a target 
kernel-density distribution for the purposes of region 
matching. The match criterion is similarity based on a color 
histogram. 

B.  l1-minimization 
The l1-minimization tracking algorithm [8], [11] is a recent 
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and sophisticated innovation that casts the tracking problem in 
the framework of compressive sampling or what is also known 
as compressed sensing [12], [13]. The latter, which has 
generated considerable excitement and a plethora of 
publications and research activity seems to have far reaching 
implications. The advantage of the l1-minimization tracker is 
that it is robust to occlusion, and adaptively generates 
templates that evolve as the target undergoes affine distortion 
(scale, rotation, translation, shear). The disadvantage is in 
terms of computational requirements unsuitable for real-time 
implementation. 

The algorithm entails representing a target candidate as a 
weighted sum of a template set and a trivial template set, 
referred to collectively as basis templates.  The template set 
can be obtained from an initial selection, reference databases, 
or more generally from the target appearance in previous 
frames. Trivial templates are single pixel perturbations added 
to represent occlusion of the target candidates. The l1-
minimization problem requires the determination of the 
sparsest representation of the target candidate in terms of the 
weighted basis templates. Tracking continues in a particle 
filter framework that serves to propagate sample distributions 
over time. 

Hence, the l1-minimization video tracking problem proceeds 
as follows: Find a sparse representation in a template 
subspace. Solve a l1-regularized least squares problem to 
achieve a sparse representation. Use sequential state 
estimation to track the desired object, utilizing a particle filter 
framework to recursively reconstruct the a posteriori pdf of the 
state. 

III.  METHOD 
A.  Threshold Parameters and Transfer of Control 
The key problem to formulating a hybrid algorithm relates 

to the criteria of interchanging control from one algorithm to 
the other. How does either tracker know whether it is tracking 
the right target? Generally it does not. All trackers are subject 
to drift, but some simple criteria can be set to assess the status 
of the tracking state. Drift occurs when the bounding box 
forming the target candidate tracks the wrong target, which is 
especially likely to occur when the target becomes occluded. 
Occlusion tends to introduce excessive target candidate size 
and velocity variation and is detected by differences in depth 
measurements across the span of a partially occluded target 
candidate.  

The thresholds for control transfer are based on absolute 
and relative parameters related to changes in target size and 
position. Measurements of changes in target size and position 
in physical units are related to appearance in terms of pixels. 
In that way, static thresholds on the physical size and velocity 
of the target are translated into dynamic thresholds in terms of 
pixels, depending on the target appearance from the geometric 
perspective in relation to the camera. The threshold parameters 
are summarized as follows: 
• Absolute Target Size in Pixels 

o Maximum (wmax) and minimum (wmin) width 

o Maximum (hmax) and minimum (hmin) height 
• Absolute Target Position in Pixels 

o Proximity to image border, for out-of-frame detection. 
• Relative Target Velocity in Pixels 

o Maximum horizontal ( )maxmax
xvx Δ= , vertical 

( )maxmax
yvy Δ= , width ( )maxmax

wvw Δ=  and height  

( )maxmax
hvh Δ=  velocities. 

o Maximum change in hw*  product. 
• Relative Target Acceleration in Pixels 

o Maximum horizontal ( )
maxmax xx va Δ= , vertical 

( )
maxmax yy va Δ= , width ( )

maxmax ww va Δ=  and height  

( )
maxmax hh va Δ=  accelerations. 

• Change in Distance (z) to Target in Physical  Units 
o Used to set parameters for Camshift based on near, mid, 

and far field distance to target. This affects the size and 
location of the target candidates generated, as opposed to the 
other thresholds, which quantify the drift or occlusion 
likelihood of the candidates provided. 

o Obtained as average distance associated with pixels of 
the target candidate. 
• Size of Target in Physical Units 

o Maximum width and height as percentage of difference 
between extreme depth values. 

o Obtained by averaging the distance in the depth values 
associated with opposite ends of the target candidate. 

These parameters set simple thresholds to assess drift and 
occlusion likelihood, and are used  to pass control between 
CamShift and the l1-minimization tracker. 

B.  Depth Map 
Stereo vision was used to generate the depth map, but other 

methods such as LIDAR, RADAR, or even human estimation 
of the scene depth could be used. The stereo camera was first 
calibrated to account for optical misalignments. Then a left 
and right stereo image pair was obtained of the background 
scene (no moving objects), each overlapping the region of 
interest in the 2D camera setup. The image pair was rectified 
for stereo matching. The disparity was used to generate a 
depth map where for each (x,y) pixel, a grayscale value is 
taken as the distance, to within a constant, of the physical 
distance to the object represented by the pixel. Proper choice 
of this constant calibrates the depth measurements. Maximum 
and minimum depth values were clamp limited between 0 and 
255 (256 grayscales), respectively, as appropriate for the 
desired contrast of the scene. Lastly, the depth map needed to 
be transformed to the 2D camera scene, positioned to overlap 
the portion in common. 

C.  Relationship of Pixel and Physical Dynamics 
The CamShift tracker is first initialized with the depth map, 

initial horizontal and vertical pixel coordinates 0)( =ttx ,

0)( =tty , frame rate (e.g. 30fps), frame dimensions (e.g. 
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640x480) and initial target pixel width and height 0)( =ttw ,

0)( =tth . 

In terms of pixels, the 2-dimensional kinematics between 
each consecutive frames are described by (1) and (2), relating 
position ( )yx, , velocity ( )yx vv , , and acceleration ( )yx aa ,  

components. 
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For each pixel, the depth map associates a physical distance 

),( yxz ′ , where the prime “ ‘ ” is used to indicate a quantity 

in physical units (i.e. m , 
s
m

, 2s
m

). Unprimed quantities are 

in terms of pixels (i.e. pix , 
frame

pix
, 2frame

pix
). 

Corresponding to (1), for the 3rd-dimension is (3). A 3rd-
dimensional correspondence to (2) in primed coordinates is 
inaccurate unless a very accurate depth map is available, the 
frame rate is very high, and the resolution is large. That is, it is 
difficult to measure acceleration accurately. 

 

( ) ( ) .
2
1 2

0 ⎟
⎠
⎞

⎜
⎝
⎛ ′+′=′−′=′Δ tatvzzz zz

 (3) 

 
The depth map gives a measure of the third spatial 

dimension, in physical units, which is projected onto the 2D 
pixel grid in order to estimate the relationship between pixel 
distances and pixel velocities to physical units. The key 
projection which relates pixel velocities to velocities in 
physical units is given in (4) and illustrated in Fig. 1. 
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Fig. 1 Illustration of projection in (4). The initial and final target 

coordinates, bounded in boxes, each have an associated depth 
distance, the change of which is used to relate pixel distance to 

physical distance. 
 
As a simplifying assumption, physical acceleration 

components in (1)-(3) are assumed zero. The frame-to-frame 
change in vertical and horizontal position in terms of physical 
distance is calculated with the physical velocities obtained 

using (4), and the time between frames, [ ]fps
t

30
1

= , shown 

explicitly in (5). 
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Now the key relationship between physical distances and 

pixel distances is obtained as the ratio 
y
y

x
xscale

′Δ
Δ

=
′Δ

Δ
=

,  which dynamically varies with each frame as the target is 
projected across varying depth. This ratio is used to obtain 
pixel thresholds by multiplying it by measurements of 
physical position and size components. 

Physical measurements of average length and width are 
limited. It is also useful to impose a target size limitation 
strictly in terms of pixels, such that target length and width 
changes are limited to a reduction by 50% or enlargement by 
200% frame-to-frame. In addition, fixed limits on physical 
velocities 

maxxv′ ,
maxyv′ ,

maxwv′ , and 
maxhv′  are translated in 

terms of pixels, and altogether the most restrictive limit sets 
effective maxxΔ , maxyΔ , maxwΔ , and maxhΔ  velocities. 

Targets directly moving nearly in-line with the eye of the 
camera present a challenge, as a large z′Δ , in terms of 
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physical distance, may be projected onto small xΔ  and yΔ  

pixel changes, and used to infer an erroneously large x′Δ  and  
y′Δ . In such cases, bounds on width w and height h changes 

(scale velocities and accelerations), generated analogous to (1) 
and (2), dominate the threshold conditions. Generally limits on 
x, y, w, h change and rate-of-change are imposed at any 
instant, but x and y limits dominate when motion is equidistant 
to camera and w and h limits dominate for motion in the z’-
direction. 

The key idea is to approximately and locally relate pixel 
distances between the target location in consecutive frames to 
physical units of target velocity and acceleration. Then 
measurements of the physical distance and size of the target 
can be translated into pixel bounds specific to the geometric 
relationship between the camera and target, which vary frame-
to-frame. This method allows for rapid scale variation in target 
appearance if the target is on the terrain close to the camera, 
but only minimal scale variation if in the far-off distance. 
Similarly, larger velocity and acceleration thresholds are 
permitted for close up objects. 

D.  Hybrid Tracking 
Tracking starts out using the CamShift algorithm. When 

occlusion or drift is detected, the target size and location from 
several frames back, before CamShift was deemed to fail, is 
used to initialize l1-minimization tracking. Typically one to ten 
frames back are used, depending on how tight the other 
parameters are set. The CamShift algorithm will typically 
show variations approaching threshold conditions just prior to 
any of the thresholds being met, so it is thought that the 
tracking results from several frames back are generally better 
estimates. However, tight thresholds can also be used and the 
very last frame meeting them used to initiate l1-tracking. 
Loose thresholds will cause the tracker to drift from the true 
target and latch onto the background or another moving 
object. Tight thresholds break the algorithm when the 
thresholds fall outside the bounding ranges. This is the trade 
off between tracking accuracy and the computational expense 
of invoking l1. 

The l1-tracker takes the target coordinates generated from 
CamShift and initializes a set of ten target templates based on 
it and perturbations thereof [8]. Tracking continues by l1 
minimization and particle filtering. It takes as many frames as 
target templates (ten) for the l1-tracker to build up a unique 
and representative set of target templates. Hence it is allowed 
to do so. Periodically thereafter the tracking results of the l1 
tracker are used to try to reinitiate CamShift tracking. If 
CamShift is able to continue tracking for a set number of 
frames (e.g. ten) without exceeding thresholds, then the l1 
tracker is shutdown and tracking resumed again by CamShift. 
The measure of the target size allows for criteria to detect full 
occlusion and ensure control is not passed back to CamShift 
while the target is still occluded. The process repeats, 
interchanging control between algorithms. The idea is that 
CamShift only calls upon the l1-tracker when needed, and 
interchange of control is based on occlusion likelihood. 

IV.  EXPERIMENTAL SETUP 
Tracking sequences were obtained utilizing a standard 2D 

640x480 pixel RGB camera at 30fps. The depth map was 
obtained by processing a pair of stereo frames from a low cost 
Minoru 3D Webcam, positioned to overlap a portion of the 
field of view from the 2D camera. The CamShift and control 
algorithms were implemented in C++ utilizing OpenCV 
libraries running on Linux platform AMD quad-core laptop. 
The l1-minimization tracker is implemented in MATLAB, 
cooperating by sharing a file space in which to exchange 
status flags and other input/output parameters. The source 
code and experimental results are posted at 
http://www.cems.uvm.edu/~gmirchan/software/caml1/. 

V.  EXPERIMENTAL RESULTS 
A practical multiple occlusion test case was chosen to 

illustrate the hybrid tracker performance and that compared to 
the performance of the component algorithms which make it 
up. The depth map, shown in Fig. 2 overlapping a portion of 
the 2D camera field-of-view, was measured from stereo image 
pairs acquired during full summer bloom, in order to highlight 
the tree occlusions. The noise in the depth map introduced 
uncertainty into distance measurements, and made 
acceleration estimates wholly unreliable, so the acceleration 
components in (1)-(3) were set to zero. Even so, the target size 
measurements were stable enough to set thresholds as criteria 
for occlusion detection. 

The target is a car coming to a stop and making a turn, 
occluded by a lampost, traffic control post, and two trees, one 
after another.  Neither the l1-tracker or CamShift on its own 
were able to track the target in this sequence. The results using 
[8] implementation of the l1-tracker are shown in Fig. 3. It 
drifts off the target after 123 frames due to the series of 
occlusions disrupting the template set, including the branches 
of a bare tree clouding the intersection. As the car passes the 
last tree occlusion, the template set is disrupted to the point 
that the target is lost in Fig. 3 (d). 

 The sequence of results using CamShift only are shown at 
the beginning of the hybrid sequence in Fig. 5 (a)-(d). The 
target height in pixels rapidly increases, and shortly after Fig. 
5 (d), the target candidate drifts onto the traffic control post at 
Frame 01892. 
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Fig. 2 Overlay of depth map in field of view of 2D frames, in the 

region of interest where target is tracked. White pixels appear as near 
to the camera, whereas black pixels appear as a far distance. The 

foliage is highlighted in part due to the non-simultaneous acquisition 
of the left and right stereo pairs from the webcam, in between which 
the foliage blows in the wind. Using a larger stereo baseline and post 
processing techniques would improve the quality of the depth map 

and hybrid algorithm performance 
 
Fig. 5 shows the successful hybrid tracking results for the 

video sequence. CamShift is deemed to fail when it hits a 
threshold. Control is then transferred to l1 using the target 
coordinates generated by CamShift ten frames prior to failing, 
since that is deemed a reliable tracking result. The control 
transfer from l1 back to CamShift is attempted periodically 
every ten frames, and control is actually handed over if 
CamShift can continue tracking for at least ten frames on 
reinitialization without exceeding threshold limits on size and 
velocity. The number of frames involved in each part of the 
transfer process are parameters that can be freely set. 

Hybrid tracking starts out by CamShift, as shown in Fig. 5 
(a)-(d) until tracking drifts in Frame 01892, due to occlusions 
in the intersection. This occlusion is detected when the frame-
to-frame variation in target height exceeds the dynamic 
threshold. The l1-tracker takes over going ten frames back, 
whose results are indicated in Fig. 5 (e)-(j).  Eventually the 
CamShift tracker is able to recover when the occlusions in the 
intersection have passed, and the l1-tracker is shut down. The 
reinitialized CamShift results are shown in Fig. 5 (k)-(l), from 
the last result by l1 up the next occluding tree. This occlusion 
is detected from the difference in the distance associated with 
the left and right sides of the target exceeding 75% of the 
maximum depth difference from minimal to maximum 
disparity. This criterion was chosen experimentally for 
tolerance to noise within the depth map, but still easily picks 
up the difference between the depth associated with the road 
and the occluding tree. 

  The l1-tracker is invoked once again to handle the 
occlusion as shown in Fig. 5 (m)-(n), and passes control back 
to CamShift, when the occlusion has passed, as seen in Fig. 5 
(o), until the car goes out of frame. Altogether, the sequence is 
shown overlaid on the depth map in Fig. 4. 

 
(a) Initial frame for all tracking sequences, Frame 01850, l1 

 
(b) Frame 01890, l1 

 
(c) Frame 01930, l1 

 
(d) Frame 01970, l1 

Fig. 3 Results for l1 tracking only, every fortieth frame at 30fps. The 
series of occlusion eventually disrupt the template set to the point it 

completely loses the target 2 frames after (d), 123 frames in total 
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Fig. 4 Sequence of tracking results, every ten frames, overlaid on the 

depth map 

VI.  CONCLUSION 
A hybrid tracking scheme has been demonstrated that is 

robust to both drift and occlusion and nominally 
computationally efficient. The principle algorithm combines 
the CamShift algorithm incorporating depth information using 
stereo vision with the robustness of l1-minimization tracking 
in a particle filter framework. The novelty of this work is in 
combining the two core algorithms of tracking - the CamShift 
kernel-based and the l1 state space-based method - and in 
formulating a control scheme for passing control from one to 
the other. The occlusion detector based upon the use of depth 
information could be implemented on other tracking 
algorithms as well, independent of any hybrid scheme. The 
main weakness of the algorithm is that some parameters need 
to be empirically derived to tune tracking performance. 

VII. FUTURE WORK 
The hybrid algorithm could be improved by adding 

additional criteria to interchange control, such as conducting 
recursive state estimation in a unified context between 
component algorithms, instead of initializing and shutting 
down the particle filter with l1-tracking, as presently 
implemented. In addition, the target candidates from CamShift 
could be used as templates for similarity comparisons to the l1-
tracking results, for more robust detection of when an 
occlusion has actually passed. Both of these would improve 
the criteria for control transfer from l1 to CamShift, and 
mitigate the likelihood of drift due to the coordinates of the 
occlusion, instead of the target, getting passed to CamShift.  
Measurement of the target size in physical units is noisy and 
drift could occur if the occlusion were of similar size as the 
target, as well as if similar appearance and trajectory.  

Implementing the l1-tracker portion in C++ OpenCV would 
have performance advantages in addition to the practical 
advantage that MATLAB core licenses would not be required 
for operation.  It is expected that such contribution to the 
OpenCV community will pave the way for a plethora of 
hybrid trackers similar to the one developed, in the same way 

that the OpenCV implementation of CamShift paved the way 
for many combinations and variations of trackers. The method 
proposed here can easily adapt other combination tracking 
algorithms with l1-minimization, for super hybridized tracking 
algorithms. 

 
 

 
(a) Frame 01850, CamShift 

 
(b) Frame 01860, CamShift 

 
(c) Frame 01870, CamShift 
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(d) Frame 01880, CamShift 

 

 
(e) Frame 01890, l1 

 
(f) Frame 01900, l1 

 
(g) Frame 01910, l1 

 
(h) Frame 01920, l1 

 

 
 

 
(i) Frame 01930, l1 

 
(j) Frame 01940, l1 

 
(k) Frame 01950, CamShift 
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(l) Frame 01960, CamShift 

 
(m) Frame 01970, l1 

 
(n) Frame 01980, l1 

 
(o) Frame 01990, CamShift 

Fig. 5 Hybrid tracking sequence results (boxed) for a car turning 
under occlusion, every ten frames at 30fps. Sequence ordered (a) to 
(o). Tracking results indicated in red (gray) boxes for CamShift or 

blue (black) boxes for l1 as part of hybrid sequence 
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