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Two iterative algorithms to compute the

bisymmetric solution of the matrix equation
A X 1B+ A XoBy+ ...+ A X B =C

A.Tajaddini

Abstract—In this paper, two matrix iterative methods are presented
to solve the matrix equation A1X1B1 + A2X2B> —{/—\ +
A; X;B; = C the minimum residual problem || 22:1 A; X;B; —
C”F = minXieBR"i/i"iﬂ\Zlizl/éiXiBi — C“F and the ma-
trix nearness problem [XilXEL’ Xi],: min[x, x,,... X,]€Sx
|| [Xl, X2, ceny Xl] — [Xl, Xz, ceey Xl] ||F, where BR™iX™i g
the set of bisymmetric matrices, and Sg is the solution set of
above matrix equation or minimum residual problem. These matrix
iterative methods have faster convergence rate and higher accuracy
than former methods. Paige’s algorithms are used as the frame method
for deriving these matrix iterative methods. The numerical example
is used to illustrate the efficiency of these new methods.

Keywords—Bisymmetric matrices, Paige’s algorithms , Least
square.

I. INTRODUCTION

In this work, we will use the following notations. Let
R™*™ and BSR™ "™ denote the set of m x n real ma-
trices and n X n real bisymmetric matrices, respectively.
Sn(Sn = (en,€n—1,...,e1))denotes the n x n reverse identity
matrix (e; denotes ith column of n x n identity matrix). The
superscript 1" represents the transpose of a matrix. In space
R™*" we define inner product as: < A, B >= trace(BT A)
for all A,B € R™*™ which generates the Frobenius norm
lAlF = v/< A, A >. Notation A B is Kronecker product.

The symbol vec(A) = (af,al,...;al)T is a vector formed
by the columns of given matrix A = (a1,as,...,a,). The

bisymmetric matrices play an important role in information
theory, linear system theory, linear estimate theory and nu-
merical analysis [3], [13], which can be defined as follows:

Definition 1.1: Let S, € R™*" be a reverse identity matrix.
A matrix X € R™*" is said to be bisymmetric matrix if X =
XT =5,X5,.

In this paper, we consider the following three problems.
Problem L.Given A; € RP*™, B; € R"*9, 4 = 1,2,...1

and C € RP*9, find matrix group [Xi,Xo,...,X;] with
X; € BSR"*"™i_ {=1,2,...,1 such that
A1 X1B1 + A X5By + ...+ A XB =C. (1)

Problem IL.Given A; € RP*™i, B/i\e/]\%’“xq, i = 1,2(..1

and C € RP*4, find matrix group [X1, Xo, ,5(\,] with X; €
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BSR™*"i ¢ =1,2,...,1 such that

l l
|| Z AzXsz 7C||F = minXiGBRnani Z AzXsz *C”F

i=1 i=1
2
Problem ITI.When problem I or 1T is consistent. Let S denote
its solution group set, of the minimum residual problem for
given matrix group [X1, Xp, ..., Xj] with X; € R™>™i, 4 =
1,2,...,1, find [ X1, Xo, ..., X]] € Sg with X; € BSR"*™i,
such that .
[Xl,XQ, ...,Xl] = min[Xl,Xz,...,X,]eSE H[Xl,XQ, ceey Xl},

(X1, X2, ..., Xl ; 3)

In many areas of computational mathematics, control and
system theory, matrix equations can be encountered. In recent
years, there has been an increased interest in solving matrix
equations; for example, Dai [2], Huang [4], have studied
the linear matrix equation AXB = C with a symmetric
and skew-symmetric condition on the solution, Peng [7], [6],
Shim [12], Chu [1] have studied the linear matrix equation
AXB + CYD = E with unknown matrices X and Y being
real or complex. The methods used in these papers included
generalized inverse, generalized singular value decomposition
(GSVD) and canonical decomposition (CCD) of matrices.
Peng [10], [11] has studied the equation Ay X1 B1+AsXo B+
. + AiX;B; = C with the bisymmetric conditions on
the solutions. Peng [11] has studied the conjugate gradient
method, and show that the solvability of the matrix equation
can be judged automatically. By using Paige’s algorithms [5],
Peng [9], [8] proposed two matrix iterative methods to get the
constrained solutions of AX B = C' and the constrained least
squares solutions of AXB+CY D = FE, and to solve general
coupled matrix equations, respectively. Motivated by the work
of Peng [9], [8], we propose two iterative methods to solve the
matrix equationA; X1 By + As Xo By + ...+ A; X B; = C with
bisymmetric condition on the solution, and matrix nearness
problem II. These matrix iterative methods have faster con-
vergence rate and higher accuracy than the iterative methods
proposed in above references in some cases. We will use
Paige’s algorithms [5], which are based on the bidiagonaliza-
tion procedure of Golub and Kahan [3] as the framework for
deriving these matrix-form iterative methods. The basic idea
is that we first transform the problem I into the unconstrained
linear problem in vector form which can be solved by Paige’s
algorithms by the Kronecker product of matrices, and finally,
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we transform the vector-form iterative methods into matrix-
form iterative methods.

This paper is organized as follows. In section 2, we shortly
recall Paige’s algorithms for solving linear systems and least-
squres problem, and so based on Paige’s algorithms, we
propose two iterative algorithms to solve problems I, II, III.
Finally, in section 3, one numerical example are presented to
support the theorical results of this paper.

II. TWO MATRIX ITERATIVE METHODS

In this section, by extending the idea of Paige’s algorithms,
we construct two algorithms for solving problem I, II. We
first shortly recall Paige’s algorithms for solving the minimum
norm solution of the following unconstrained linear system:

Axr =0,
where A € R"™*™ and b € R™. Paige’s algorithms are based
on the Bidiagonalization procedure of Golub and Kahan [3],
which are summarized as follows.

Paige’s Algorithm 1

1. 7o =1;§ = —1;wg = 0520 = O0; wg = 05

Brur = byarvy = ATuy;

2. For i=1,2,...

(@) &= —&-1Bi/aus

(b) 2z =z 1+ &vis

(©) wi=(Ti—1 — Piwi—1)/ous

@) wi =wi_1 +wivg;

(©) Bip1uir1 = Avy — ojuy;

6 7 =—-mic10u/Biv1s

(@) air1vigr = ATuipr — Big1vis

() v = Biv1&i/ (Biv1wi — 7i)s

D) i = 2 — yaws;

() Exit if a stopping criterion has been met.

Paige’s Algorithm 2

1. Ovi = ATb; pruy = Aviswy = vi/p1; & = 01 /p1; 21 =
ISALE

2. For i=1,2,...

@ Oiy1vipr = ATu; — pivis

() pit1tiv1 = Avipr — O

(©) wiy1 = (Vig1 — bip1wi)/pit1;

() &iv1 = —&ibir1/pir1s

(€) wip1 =2 +&r1witts

(f) Exit if a stopping criterion has been met.

The real scalars «;, (35, p;, and 6; are chosen to be nonnegative

and such that |lu;||l2 = ||vill2 = 1 in Paige’s algorithms,
respectively. The stopping criterion may be chosen as
||7”i||2 = ||b — AJ%HQ < € or foz — l‘i_1||2 < ¢, where € > 0

is a small tolerance.

Based on Paige’s algorithms 1 and 2, we propose two matrix
iterative algorithms to solve problem I and II.

We can show that problem I is equivalent to the linear matrix
equation

Ax

I
S8

“
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where,
BIT®A1 B;@Az BLT®AZ
A— 5 BT Q) A150;  SnyBT R A25n, o (Sn BT Q) 415w,
- a1 Q) BT A, Q) BT A QBT
(snlAlT)T®BlTsn1 (snzAg)T®Bszn2 (SnlAlT)T®BlTSnZ
vec(X1)
vec(Xa) vec(C)
v vec(C)
o . ' vee(CT)
. vee(CT)
vee(X))
Therefore, the vector form of fyuy = b, ayv; = ATy,

T
Bit1uiv1 = Avi — ajuy, and aip1vigr = A% i1 — Bit1vi,
1 =1,2,... in Paige’s algorithm 1 can be written in the matrix
form

B =2|C|lp, Urp = C/B1, Urp = C/B1, Uz = CT /By,
Upa=CT/B,

on = {35 14T UL BT + 8, ATUL2 BT S, + Bill1 34; +
Sni BiUl,4AiSni H%"}l/Q’

arVi; = ATU BT + S,,ATU,2BY'S,,, + B;Ui3A; +
S BiUy 4 A, i = 1,2, .00 1,

Bry1 = {10, AiVeiBi -
S i1 I[AiSh, Vi iSn, Bi — i Up 2|3+
I3ims B Vi i AT —anUs 313+ iy | BT Sn, VoS, AT —
arUsall3}2

arUkal%  +

!
Br1Urv1,1 = Y iy AiViiBi — arUs 1,

!
Br41Uk+1,2 = D1 AiSn, Vi,iSn, Bi — apUs 2,

l T T
Br41Uk+1,3 =D i1 Bi Vi A — axUs 3,
Bri1Upsra =St BTS, VieiSu, AT — U,

k+1VEk+1,4 i=1 i On; Vik,ion; A; QUL 4,

a1 = {Xioy AT Uk BY + Sy, ATUii12BT Sy, +
BiUk11,34; + Sn, BiUg1.44:Sn, — Brs1Viil %12,

ags1Vir1i = ATU 1B + S, ATUk12BTS,, +
BiUk41,34; + Sp; BiUgy1,44:50, — Br+1 Vi, i=1,2,...1

Also, the vector form of 61v; = ATb, piuy = Aug,
T
Oiv1viv1 = A uy — pivi, pivitisr = Avigr — Oipug,

1 =1,2,... in paige’s algorithm 2 can be written as:

0 = (XL IATCBT + 8, ATCBTS,, + BiCTA, +
S’n,BzCTA7S’mH%'}1/2’

Vi, = ATFcBY + S, ,ATCBIS,, + B,CTA;, +
Sn, BiCTA;S,,, i=12,...,],

l !
;= {152, AiXa i Bill% + 3751 AiSn, X1,iSn, Bil % +
I3 iy BEX1 AT % + 13 imy BE S, X130, AT |1 31/2,
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p1U1 = 22:1 Ain,iBil, p1U12 = Zizl A;Sy, X1,i5n, Bs,
p1U1,3 = Zi:l B?Xl,zA?9 P1U1,4 =
22:1 B?anXlalSn:A?’

Ok+1 = Zi=1{HAiTUk,iBiT-I-SmAiTUk,2BiTSm+BiU’°v3Ai+
i BiUkaAiSn, — piVieill 3112,

Op+1Vit1,i = ATUy ;BE + S, AT Uy, o BT Sy, + BiUy 3A; +
S’n,,BlUk,ﬁlA’LSnl - kak,i$ i=1a29---31,

l
{” Zi:1 Ain+1,iBi

Prs = O 1Ukalle +
1> ieq AiSn, Vit1,iSn, Bi - Ok+1Uk 2| % +
301 Bf Viy1 AT - Ok 11Uk 3] % +

I3 2im1 B S, Vir1,iSn, AT = Op1Up all3+}1?

l
Pr1Uky11 =D 1 AiVip1,iBi — 041Uk 1,

l
Prt1Uky1,2 =D ;1 AiSn; Vit 1,i5n, Bi — 0x+1Uk 2,

Up13 =3 _ BTVir12AT — 0,1 U,

Pk+1Yk+1,3 Zizl i VE+1,i45 k+1VE,3,

l
Pr41Uks1,a = > iy BESn, V1,690, AT — 0341 Up, 4,
Analogous results can be obtained about the minimum
residual problem 1. According to above discussion, we
introduce two iterative algorithms to compute the unique
minimum Frobenius norm solution [X, X, ..., X;] of the
problem I as:
Paige 1 B.S.
1. T0 = ].;f() = —1;&)0 = O;ZOJ = ... = Z(),l = 0; WO,l =
e = WOJ = O;

B1 = 2||C|lp, Urp = C/B1,Ura = C/B1, Uz = CT /By,
Ura=C"/Bu;

a1 = {22:1 HAZTULlBiT +SniA?U1»2BiTSW + BiU13A;i +
SniBiUlAAiSTLiH%‘}l/Q’

Vl,i = AZTULlBiT + SnLAlTUl,QBZTSnL + BiULgAi +
S BiU1aAiSp, i = 1,2, 0,

2. For k=1,2,...

@) & = —&k—18k/ou;

®) Zii=Zy-1i+EVii=Zr—1:+ &/ (AT U 1 B +
Sn, AT UL o BE'S,,+BiUy 3 4i+ 50, BiUyk 4 A4iSp: — B Vie—1,),
i=1,2 ...L;

(©) wi = (Th—1 — Brwr—1)/ak;
(d) Wii=Wi_1i4+wpVii = Wi_1i+wi/ar(ATU, 1 B +

Sy, AT UL 2 B Sy, +BiUy, 3Ai+Sn, BiUg 4 AiSn, — Bk Vi—1,)
i=1,2,....1;
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(e Beri = IS AViiBi — apUgal% +
1)) AiSn,VieiSu, Bi — arUsalls + || S BY Vi AT —
U 3|15

I ey BY S Vi, AT — anUkal3)7;

© Bri1Usiin = oy AiViiBi — axUs s

Bet1Ukt1,2 = So_y AiSn, Vi,iSn, Bi — ai Uy o3

Br+1Uk41,3 = Zi:l BI'Vi AT — oy Uy 3;

Br+1Uk+41,4 = 22:1 BI'S,, Vie,iSn, AT — Uy, 4

(®) Tk = —Tr-10%/Br+1;

M) appr = {34 14T Ukp11 BE + S, ATUp 1 2BT Sy, +
BiUst1,3A; + Sy, BiUk 11,4450, — B Vil 5112,

(i) ort1Vit1,i = ATUpp11BY + Sy, ATUj 1 2BES,,, +
BiUk41,34; + Sp, BiUk1,44:50, — Br1 Vi, i=1,2,...]5

G = Brr18e/ Brrriwr — Tr);

k) Xii = Zpi — i Wgii=12,..1;

(1) Exit if a stopping criterion has been met.

Paige 2 B.S.

1. 6 = {X'_, |ATCBT + S,,ATCBTS,, + B.CTA; +
SnzBZCTAISan%‘}l/2’

Vi, = ATrcBY + S,,AT'CBIS,, + B,CTA;, +
Sn, BiCTA;S,,, i=1,2,...];

p= {\|TZ§:1 ’%‘Q”:B’:”% + [ i AiSn, Vi, Bill% +
2521 Bi Vi Ai I3+

I 2im1 B S ViiSn, AT 15312
p1Ur1 = Zli:1 AiV1 By

p1U12 = 22:1 AiSn, V1 ,iSn, B
pULs =34y BIVi AT
prUa = iy BT Sp, V1,580, AT
Wii=1/pVig, i=12,;

&1 =01/p1;

X1, =W, i=12,..5

2. For k=1,2,...

@ O = i {|ATURBY + S, ATU BT S, +
BiUk 3A; + Sy, BiUg 4AiSn, — piViil % }%
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Op+1Vis1,s = AT Uy i Bl + Sy, AT Up 2B Sy, + BiUp 3A; +

Example 3.1: Suppose that the matrices Al, B1, A2, B2,
and C are given

Sn; BiUk,aAiSn; — prVis i=1,2,..15
1 3 1 3 1
) pre1 = {10 AiVis1,iBi — O Una % + g _; g _; g
131 AiSn, Vit1,i5n, Bi - Ok+1Uk 2| % + Al = 1 6 11 6 11 |
I Z y B Vi1, A7 - Or11Us 3] % + -5 5 -5 5 -5
> B S Vier1,iSn, AT — Opir Upa| 5325 o 4 9 4 9
Pr+1Uks1,1 = ZZ 1 AiViy1,iBi — Ok 1Ug 15 -1 4 -1 4 -1
. 5 -1 &5 -1 5
Pr1Uks1,2 =D ;1 AiSn; Vit 1,i5n, Bi — Ok+1Uk 2; Bl=| -1 -2 -1 -2 -1 |,
3 9 3 9 3
Prr1Uki13 = 30— BT Vi1 i AT — 001Uy 35 7 -8 7 -8 7T
Uki1a =3, BTy, Vir1iSn AT — 011U 4 3.4 3 416
Pr4+1Uk+1,4 21:1 i Ong VE+1,i0n,; A5 k+1Uk,4 1 3 -1 3 -3 -1
: 3 -5 3 =5 2 5
Wia1i = (Vg1 — Ot 1 Wi s ,i= 1,2, =
©) Witis = Vg1, — Ot 1 Wi i)/ prota, A2 3 -4 3 -4 1 6 ,
-1 3 -1 3 -3 -1
d = —£.0 ;
(d) &kt EiOrt1/pr1 s = 3 5 o s
€ Xpt1i = Xpi + &1 Wi, 1=1,2,1 -5 4 -1 -5 4
-2 3 5 -2 3
(f) Exit if a stopping criterion has been met. 3 5 —1 3 5
Now, we consider the matrix nearness problem III. Suppose B2= 2 6 3 2 —6 |
X;, i=1,2,...,] are bisymmetric matrices, and X; € R <" it 1 11 7 1 11
follows o N 4 -1 4 -5 4
minX,ieRn,;Xni [Xl, XQ, ceey Xl] — [Xl, X2, ceny X’H%‘ =
IV G = —~r and
. . |[X X4+ Xy 450, X188, +5n X1 Sny
Ny eproxna [ILA1 = 77— 1 e —136 878 419 —510 1216
X0 - Rt X1 4 Sy XSy # 5, X1 Sy 2 + 898 481 701 1321 82
||}:_§TT+Sn1;;snl 60, KL S, c_| 499 1779 043 406 1840
~ 4 > 1088 1278 1643 —110 2440
X=X *5"rX”$w*S"er 2, —974 —1855 —1171 —1015 —1790
Hence ﬁndmg the unique solution of the matrix 973 1431 1417 58 2314

nearness problem III is equivalent to first finding the
minimum Frobenius norm bisymmetric solution of the
matrix equation I or the Nleast-squaEeg problem II with
C - Zi 1A-(Xi+Xi +S”iX7f"i+S”'iX7" S’”)BZ— instead of
C. Once the minimum Frobenius norm bisymmetric solution
group (X}, X5, ..., X/] is obtained by Paige 1 B.S and Paige
2 B.S, the unique bisymmetric solution group [)/(\1, X, ... 5(\1]
of the matrix nearness problem III can be obtained. In this
case, the solution group [Xl,Xg, . Xl]can be expressed as

~ T
X +X +S X Sn.+Sn. X; S
X; =X+ L S T )

III. NUMERICAL EXAMPLES

In this section, we compare Paige 1 B.S and Paige 2 B.S nu-
merically with the method proposed in [11], denoted by Peng-
M. All the tests were performed by Matlab 7.1. We choose the
initial iterative matrix groups in the Peng’s method as zero
matrix group in suitable size. All the following examples are
used to illustrate the performance of three methods to compute
the minimum Frobenius norm bisymmetric solution group
[X1, X2, ..., X;] of the matrix equation 1 an the minimum
residual 2.

International Scholarly and Scientific Research & Innovation 7(5) 2013

The above given matrices Al, B1, A2, B2, and C' are such that
the matrix equation A; X3 B; + A3 X2 By = C have bisymmet-
ric solution pairs [ X1, X2]. Figure 1 describes the convergence
rate of the function R(k) = ||C — A1 X1B1 — A2 X Bs||r of
the above two methods and conjugate gradient method.
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