Ni Metallization on SiGe Nanowire
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Ni Metallization on SiGe Nanowire

Authors: Y. Li, K. Buddharaju, X. P. Wang

Abstract:

The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.

Keywords: SiGe, nanowires, germanosilicide.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335654

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740

References:


[1] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature, 451, 163 (2008).
[2] Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, and S. J. Lee, Electron Dev. Lett., 32, 674 (2011).
[3] Y. Li, K. Buddharaju, B. C. Tinh, N. Singh, and S. J. Lee, IEEE Electron Dev. Lett., 33, 715 (2012).
[4] L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett., 96, 173108 (2010).
[5] T. Schwamb, B. R. Burg, N. C. Schirmer, and D. Poulikakos, Appl. Phys. Lett., 92, 243106 (2008).
[6] K. L Pey, S. Chattopadhyay, W. K. Choi, Y. Miron, E. A. Fitzgerald, D. A. Antoniadis, and T. Osipowicz., J. Vac. Sci. Technol. B, 22, 852 (2004).
[7] H. B. Zhao, K. L. Pey, W. K. Choi, S. Chattopadhyay, E. A. Fitzgerald, D. A. Antoniadis, and P. S. Lee. J. Appl. Phys., 92, 214 (2002).
[8] C. K. Maiti, Silicon Hetrostructure Handbook, John. D. Cressler, Ed. CRC Press, ch 2 (2005).
[9] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature, 430, 61 (2004).
[10] N. S. Dellas, B. Z. Liu, S. M. Eichfeld, C. M. Eichfeld, T. S. Mayer, and S. E. Mohney, J. Appl. Phys. 105, 094309, (2009).
[11] C. H. Jang, D. O. Shin, S. I. Baik, Y-W. Kim, Y-J. Song, K-H. Shim, and N-E. Lee, Japanese J. Appl. Phys., 44, 4805 (2005)
[12] J. S. Luo, W. T. Lin, C.Y. Chang, and W. C. Tsai., J. Appl. Phys.82, 3621, (1997).
[13] K. L. Pey, W. K. Choi, S. Chattopadhyay, H. B. Zhao, E. A. Fitzgerald, D. A. Antoniadis, and P. S. Lee, J. Vac. Sci. Technol. A, 20, 1903 (2002).
[14] C. Y. Lin, W. J. Chen, C. H. Lai, A. Chin, and J. Liu. IEEE Electron Dev. Lett., 23, 464 (2002).
[15] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashbun, and M. C. Ozturk, J. Appl. Phys., 77, 5107 (1995).
[16] N. S. Dellas, S. Minassian, J. M. Redwing, and S. E. Mohney, Appl. Phys. Lett., 97, 26 (2010).