Nano-Alumina Sulfuric Acid: An Efficient Catalyst for the Synthesis of α-Aminonitriles Derivatives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Nano-Alumina Sulfuric Acid: An Efficient Catalyst for the Synthesis of α-Aminonitriles Derivatives

Authors: Abbas Teimouri, Alireza Najafi Chermahini, Leila Ghorbanian

Abstract:

An efficient and green protocol for the synthesis of α- aminonitriles derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanides has been developed using natural alumina, alumina sulfuric acid (ASA), nano-γ-alumina, nanoalumina sulfuric acid (nano-ASA) under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.

Keywords: Nano-γ-alumina, nano-alumina sulfuric acid, green synthesis, microwave irradiation, α-aminonitriles derivatives.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087328

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5000

References:


[1] R. O. Duthaler, Tetrahedron. 50 (1994) 1539-1650.
[2] H. Groger, Chem. Rev. 103 (2003) 2795-2827.
[3] S. Kobayashi, H. Ishitani, Chem. Rev. 99 (1999) 1069-1094.
[4] S. Nakamura, N. Sato, M. Sugimoto, T. Toru, Tetrahedron: Asymmetry 15 (2004) 1513-1516.
[5] S. Harusawa, Y. Hamada, T. Shioiri, Tetrahedron Lett. 20 (1979) 4663- 4666.
[6] A. S. Paraskar, A. Sudalai, Tetrahedron Lett. 47 (2006) 5759-5762.
[7] D. Enders, J. P. Shilvock, Chem. Soc. Rev. 29 (2000) 359–373.
[8] S. Kobayashi, H. Ishitani, Chem. Rev. 99 (1999) 1069–1094.
[9] K. Shen, X. H. Liu, Y. F. Cai, L. L. Lin, X. M. Feng, Chem. Eur. J. 15 (2009) 6008–6014.
[10] Z. F. Xie, G. L. Li, G. Zhao, J. D. Wang, Synthesis (2009) 2035–2039.
[11] F. Cruz-Acosta, A. Santos-Exposito, P. Armas, F. Garcia-Tellado, Chem. Commun. 2009, 6839–6841.
[12] J. P. Abell, H. Yamamoto, J. Am. Chem. Soc. 131 (2009) 15118–15119.
[13] Sakshi Shah, Baldev Singh, Tetrahedron Letters 53 (2012) 151–156.
[14] Zheng Li, Yuanhong Ma, Jun Xu, Jinghong Shi, Hongfang Cai Tetrahedron Letters 51 (2010) 3922–3926.
[15] B. C. Ranu, S. S. Dey, S. Hajra, Tetrahedron 58 (2002) 2529–2532.
[16] S. K. De, R. A. Gibbs, Tetrahedron Lett. 45 (2004) 7407–7408.
[17] Z. L. Shen, S. J. Ji, T. P. Loh, Tetrahedron 64 (2008) 8159–8163.
[18] A. Majhi, Sung Soo Kim, S. T. Kadam, Tetrahedron 64 (2008) 5509– 5514.
[19] S. K. De, J. Mol. Catal. A: Chem. 225 (2005) 169–171.
[20] M. North, Angew. Chem., Int. Ed. 43 (2004) 4126–4128.
[21] J.S. Yadav, B.V.S. Reddy, B. Eshwaraiah, New J. Chem. 27 (2003) 462- 465.
[22] J.S. Yadav, B.V.S. Reddy, B. Eswaraiah, Tetrahedron 60 (2004) 1767- 1771.
[23] W.Y. Chen, J. Lu, Synlett (2005) 2293-2296.
[24] B. Karimi, A. A. Safari, J. Organomet. Chem. 693 (2008) 2967–2970.
[25] Ezzat Rafiee, Solmaz Rashidzadeh, Alireza Azad, Journal of Molecular Catalysis A: Chemical 261 (2007) 49–52.
[26] T. Rahi, M. Baghernejad, K. Niknam, Chin. J. Catal., 33 (2012) 1095– 1100.
[27] B. Karmakar, A. Sinhamahaparta, A. Baran Panda, J.Banerji, B. Chowdhury, Applied Catalysis A: General, 392 (2011) 111-117.
[28] A. Teimouri, A. Najafi Chermahini, J. Mol. Catal A: Chem. 346 (2011) 39-45.
[29] H. Shargi, M. H. Sarvari, R. Eskandari, J. Chem. Res. (2005) 483-486.
[30] K.M. Parida, Amaresh C. Pradhan, J. Das, Nruparaj Sahu Mat. Chem. Phys. 113 (2009) 244–248.
[31] B.D. Cullity, S.R. Stock, Elements Of X-Ray Diffraction, Third Edition Prentice Hall, Upper Saddle River, NJ, 2001 Pp. 388.