Abstract—The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For \(n \) risk reduction options and size of the available risk reduction budget \(B \) (expressed as integer number), the worst-case running time of the proposed algorithm is \(O(n \times (B+1)) \), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry.

Keywords—Optimisation, railway risk reduction, budget constraints, dynamic programming.

I. INTRODUCTION

The railway operators and infrastructure owners are increasingly required to enhance services by introducing and implementing the best options for optimising risk reduction. In practice, the application of the “As Low As Reasonably Practicable” (ALARP) framework for risk reduction in the railway industry is a challenge, further compounded by decisions that must be made on a finite number of risk reduction options, within specified budgets. The current application of the cost-benefit technique as a decision support tool for determining the best options for risk reduction is inadequate[1] and there are advocates for alternative techniques [2]. However, studies have exposed the inadequacies of applying basic economic theories in the transport industry[3]. A fuzzy-analytical hierarchy process has been proposed by [4]. The Analytical Hierarchy Process (AHP) requires the use of pair-wise comparison matrix and eigenvector to specify weights higher than a specified threshold [5], [6]. AHP does not adequately support the decision-maker in choosing alternatives that have higher weights than the threshold and are unsuitable for selecting more than one choice when multiple alternatives are present[7]. Other proponents of alternatives to the cost-benefit approach have demonstrated the application of different optimisation techniques in addressing risk reduction within budget constraints[8]–[15]. These studies apply multi-criteria methods such as AHP, Simulated Annealing, Tabu Search, Genetic Algorithms, Expected Utility Theory and combinations of these. The limitations of these approaches are well documented in [16]–[21]. A comprehensive analysis by [22], demonstrates that the optimal resource allocation problems are NP-hard problems. Studies undertaken the suitability of optimisation techniques concluded that the optimal resource allocation is best addressed by using dynamic programming [23], [24].

In this paper, a case study of a railway line section has been used to demonstrate the effectiveness and accuracy of the dynamic programming optimisation technique for a major renewal project. The accident data set has been extracted from a 70km railway line with 34 stations, operating 33 - 35 trains daily. The railway line operates at an average speed of 60 to 70km/h line and 54 million journeys annually. The study focuses on the major accident risks on the line – Platform Interface (Platform-only accidents) and Collision between Trains. For the platform-only accidents, 20 available risk reduction options have been identified (Table I). The number of identified risk reduction options for the risk ‘Collision Between Trains’ was 81, of which only a small sample has been listed in Table II, due to space limitations. The risk reduction measures have been listed with the associated costs and risk reduction achieved.

Michael Todinov and Eberechi Weli are with the Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Oxford, Wheatley, OX33 1HX (e-mail: mtodinov@brookes.ac.uk).
TABLE I
A SET OF RISK REDUCTION OPTIONS FOR THE RISK OF PLATFORM TRAIN INCIDENTS (PLATFORM-ONLY)

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk Reduction Option</th>
<th>Cost [£ 100,000]</th>
<th>Removed Risk [£ 10,000]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emergency/incident management systems</td>
<td>100</td>
<td>530</td>
</tr>
<tr>
<td>2</td>
<td>Station defect reporting & corrective system</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Emergency drills – station staff training</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Crowd control procedures & systems</td>
<td>100</td>
<td>265</td>
</tr>
<tr>
<td>5</td>
<td>Slip, trip, fall toolkit</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Station surface</td>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>Inspections/testing/renewals</td>
<td>800</td>
<td>1360</td>
</tr>
<tr>
<td>8</td>
<td>Platform Edge Doors (half length)</td>
<td>100</td>
<td>132</td>
</tr>
<tr>
<td>9</td>
<td>Access & egress from incident site</td>
<td>200</td>
<td>260</td>
</tr>
<tr>
<td>10</td>
<td>Support from platform supervisors</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>11</td>
<td>Painted line warnings/signage</td>
<td>50</td>
<td>530</td>
</tr>
<tr>
<td>12</td>
<td>Platform emergency plunders – train stops</td>
<td>400</td>
<td>3900</td>
</tr>
<tr>
<td>13</td>
<td>Gap fillers</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>14</td>
<td>One-person-operated CCTV systems</td>
<td>1200</td>
<td>6100</td>
</tr>
<tr>
<td>15</td>
<td>Stair-nose marking</td>
<td>50</td>
<td>350</td>
</tr>
<tr>
<td>16</td>
<td>Station supervisor/personnel training</td>
<td>100</td>
<td>660</td>
</tr>
<tr>
<td>17</td>
<td>Re-design/r-build platform</td>
<td>1000</td>
<td>2800</td>
</tr>
<tr>
<td>18</td>
<td>Platform lighting (incl. emergency lighting)</td>
<td>550</td>
<td>1300</td>
</tr>
<tr>
<td>19</td>
<td>Increased traffic – major events, peak times</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>20</td>
<td>Enhanced surfaces – platforms</td>
<td>350</td>
<td>410</td>
</tr>
</tbody>
</table>

TABLE II
A REPRESENTATIVE SAMPLE SET FROM 81 RISK REDUCTION OPTIONS FOR THE RISK OF COLLISION BETWEEN TRAINS ACCIDENTS

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk Reduction Option</th>
<th>Cost [£ 100,000]</th>
<th>Removed Risk [£ 10,000]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Train stops</td>
<td>70</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>Speed restrictions – compromised overlaps</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>On-board sanding</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>In-cab CCTV</td>
<td>300</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>Driver training – Signal passed at Danger</td>
<td>30</td>
<td>180</td>
</tr>
</tbody>
</table>

II. ALGORITHM FOR SOLVING THE PROBLEM OF OPTIMAL BUDGET ALLOCATION IN THE RAILWAY INDUSTRY

Let S be the set of all available risk reduction options $i=1,2,...,n$, for a particular major risk in the railway industry. As a measure of the effectiveness of each risk reduction option, we postulate the measure amount of removed risk. The amount of removed risk is the expected cost of prevented accidents, delays, fatalities, injuries etc. expressed in monetary terms. Each risk reduction measure i, ($i=1,2,...,n$) is characterised by the amount of risk rr_i it removes after its implementation. Each risk reduction measure i, ($i=1,2,...,n$) is also characterised by its cost of implementation c_i.

Each risk reduction option cannot be selected more than once. As a result, each risk reduction option from the set S of all available risk reduction options can either be accepted or rejected.

The task of optimal allocation of the fixed budget reduces to determining the optimal subset $P \subseteq S$ of risk reduction options, whose total sum of removed risks $\max \sum_{k \in P} rr_k$ is maximum and whose total cost of implementation does not exceed the available risk reduction budget B.

$$\max \sum_{k \in P} rr_k; \sum_{k \in P} c_k \leq B \quad (1)$$

considering the magnitude of the implementation costs for the risk reduction options in the railway industry and the magnitude of removed risks, it can be assumed that the costs and the amount of removed risk can always be expressed integer numbers. These express the removed risk and the cost of implementation in thousands, tens of thousands or hundreds of thousands of pounds sterling. It is also assumed that the available budget can also be specified by an integer number. As a result, the problem of optimal allocation of a risk reduction budget in the railway industry is reduced to a combinatorial optimisation problem involving integers only.

This problem can be solved by using dynamic programming techniques [25],[26]. Although the dynamic programming techniques have been known for a long time, to the best of our knowledge, in this paper, these methods have been applied for the first time to solve a problem of optimal risk reduction in the railway industry.

The advantage of the dynamic programming [23],[25],[26] consists of the fact that it finds solutions to sub-problems increasing in size, stores them in the memory and describes the solution of each sub-problem in terms of already solved and previously stored solutions of smaller sub-problems. As a result, sub-problems are solved only once, which makes the dynamic programming significantly more efficient than a brute-force method based on the enumeration of all possible subsets in the set of available risk reduction options S. The number of possible subsets in the set S is 2^n and the computational time of a brute-force method based on scanning all possible subsets increases dramatically with increasing the number of risk reduction options.

The description of the algorithm in the pseudo-code is presented next.

A. Algorithm 1: Building the Dynamic Risk Reduction Table

Initialising array $x[i][j]$ with zeroes in the row with index ‘0’ and in the column with index ‘0’.

\[
\text{for} i=1 \text{ to } n \text{ do}
\]
\[
\text{for } j=1 \text{ to } B \text{ do}
\]
\[
\{ \quad \text{cur}_\text{budget}=j; \\
\text{if } (c[i]>\text{cur}_\text{budget}) \text{ then } \{ x[i][j]=x[i-1][j]; \\
\text{trac}[i][j]=0; \} \quad \text{else}
\]
\[
\{ \quad \text{rem}=\text{cur}_\text{budget}-c[i]; \\
\text{tmp}=rr[i]x[i-1][\text{rem}]; \\
\text{if } (x[i-1][\text{cur}_\text{budget}] > \text{tmp} \text{ then } \{ \quad \text{x}[i][j]=x[i-1][j]; \text{trac}[i][j]=0; \}
\]
The algorithm works as follows. The solutions of the sub-problems are kept in the array $x[i][j]$, where the rows correspond to the risk reduction options and the columns correspond to the available budget. The information necessary to restore the optimal solution is kept in the array $trac[i][j]$. The size of the $x[i][j]$ array is $(n+1) \times (B+1)$ elements. The row with index '0' of the array $x[i][j]$ corresponds to zero number of selected risk reduction options in the optimal set P; the column with index '0' of the array $x[i][j]$ corresponds to zero budget.

The sub-problems are defined by the size of the current budget which varies from 1 to B units. The cost of the ith risk reduction option is compared with the value of the current budget and if it is greater than the current budget, the ith risk reduction option is not included in the optimal set P, which is reflected by placing zero in the $trac[i][j]$ array. In the case where the current budget is greater than the cost of the ith risk reduction option, a decision is taken whether to include the ith risk reduction option or not.

Initially, the statement ‘rem = cur_budget - c[i];’ determines the remaining budget if the ith risk reduction option is included in the optimal set P. The sub-problem marked by $x[i-1][rem]$ however has already been solved and its solution has been recorded in the $x[i][j]$ array. The entry $x[i-1][rem]$ gives the maximum amount of removed risk within budget equal to ‘rem’ and for i-1 available risk reduction options. Consequently, the solution of the sub-problem does not need to be determined again; it can simply be read out from the $x[i][j]$ array. The amount of risk removed by the ith risk reduction option is $rr[i]$. Consequently, the maximum amount of removed risk for budget $cur_budget=\text{if the ith risk reduction option is included, is given by ‘tmp = rr[i] + x[i-1][rem]’.}$

If the ith option is not included in the optimal set P, the maximum amount of removed risk within the budget cur_budget is given by $x[i-1][cur_budget]$. Consequently, the decision whether to include the ith risk reduction option in the optimal set or not, depends on the outcome of the comparison made in the statement ‘if($x[i-1][cur_budget]\geq\text{tmp}$) where $\text{tmp}=rr[i] + x[i-1][rem]$.

If ‘$x[i-1][cur_budget]\geq\text{tmp}$’, not including the ith risk reduction option yields greater amount of removed risk and the entry ‘$trac[i][j]\equal{}0$’ in the $trac[i][j]$ array is set to zero, which indicates that the ith risk reduction option has not been included in the optimum set of options P. The maximum amount of removed risk is equal to the maximum amount of removed risk within the current budget ‘$j’$, for i-1 total number of available options. This maximum however, has been computed and is already in the array $x[i][j]$; this is the entry $x[i-1][j]$.

If ‘$x[i-1][cur_budget]\text{<tmp}$’, including the ith option yields greater amount of removed risk and the entry in the $trac[i][j]$ array is set to one(‘$trac[i][j]=1$’), which indicates that the ith risk reduction option has been included in the optimal set P. The maximum amount of removed risk is equal to $x[i][j]=rr[i] + x[i-1][rem]$.

In words, the maximum amount of removed risk is equal to the removed risk from including the ith risk-reduction option plus the maximum amount of removed risk for i-1 available options within the remaining budget ‘rem’.

The optimal set of risk reduction options is restored by the next algorithm in pseudo-code.

B. Algorithm 2: Restoring the Optimal Set of Risk Reduction Options from the Dynamic Tables

Initialise all entries of the solution array with zeroes.

```plaintext
cur_bud = B;
cur_opt = n;
tmp = trac[cur_opt][cur_bud];
while (cur_opt > 1) do
  if (trac[cur_opt][cur_bud] = 1) then {
    solution[cur_opt] = 1;
    cur_bud = cur_bud - c[cur_opt];
    cur_opt = cur_opt - 1;
  }
  elsecur_opt = cur_opt - 1;
}
```

The algorithm starts with the entry $trac[n][B]$ of the $trac[i][j]$ array, which corresponds to a full budget B and all n available risk reduction options. If the n-th option has been included in the optimal set P, this will be indicated by a non-zero entry in the $trac[i][j]$ array. In this case, the algorithm will continue, until the first option is reached. At this point, the remaining budget if the n-th option has been included in the optimal set P, this will be indicated by a non-zero entry in the trac-array (‘solution[n]’). In this case, the current option ‘solution[n]’ marks the n-th option as ‘included’ in the optimal set P, by the statement ‘solution[n] = 1’. The current budget is then reduced by the statement ‘cur_bud = cur_bud - c[cur_opt]’ with the cost of the current (n-th) option. The current option to be considered should now be the (n-1)st option. This is ensured by the statement ‘cur_opt = cur_opt - 1’.

If the n-th option has not been included in the optimal set, this will be indicated by a zero entry in the $trac[i][j]$ array (‘solution[n] = 0’). In this case, the current budget is not reduced because no cost has been incurred for implementing the n-th risk reduction option.

The process of considering the options in reverse order continues, until the first option is reached. At this point, the entries of the solution array will contain ‘1’ for options which have been included in the optimal set P and ‘0’ for options which have not been included in the optimal set P.

The running time of Algorithm 1 building the dynamic table, is determined by the two nested loops: ‘for i=1 to n do’ and ‘for j=1 to B do’, which contain a set of operations that are executed in constant time. The maximum number of steps, after which Algorithm 1 will terminate, is $n \times B$. The maximum number of steps performed by Algorithm 2 is n, because after each iteration of the while-do loop, the number of options is reduced by 1. As a result, after at most n steps, Algorithm 2 will terminate. The total number of steps of the optimisation algorithm is therefore $\times B + n = n \times (B + 1)$. The worst-case running time of the algorithm for optimal allocation of a risk reduction budget is $O(n \times (B + 1))$.

The equation for the worst-case running time of the algorithm is $O(n \times (B + 1))$.
The algorithm has been tested on standard data sets with known solutions. For each of the data sets the algorithm returned the correct solution.

Now consider the risk ‘platform train incident’ with 20 available risk reduction options (Table I), whose removed risk and cost have been given as a multiple of £10000. For different specified budgets, the optimal set of risk reduction options are according to Table III.

TABLE III

OPTIMAL SETS OF RISK REDUCTION OPTIONS FOR THE RISK OF PLATFORM TRAIN INCIDENTS (PLATFORM-ONLY)

<table>
<thead>
<tr>
<th>Budget [x £10,000]</th>
<th>Optimal set of options</th>
<th>Cost of option [x £100,000]</th>
<th>Removed Risk [x £10,000]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2900</td>
<td>1,11,12</td>
<td>2900</td>
<td>14870</td>
</tr>
<tr>
<td>3300</td>
<td>1,4,6,9,11</td>
<td>3300</td>
<td>15615</td>
</tr>
<tr>
<td>3500</td>
<td>1,2,3,5,11</td>
<td>3490</td>
<td>16292</td>
</tr>
<tr>
<td>4000</td>
<td>1,2,3,4,5,6,8,9,11</td>
<td>3990</td>
<td>17169</td>
</tr>
</tbody>
</table>

For the risk ‘train collision’ (Table II presents a representative sample data set) from 81 available risk reduction options, whose removed risk and cost have been given as a multiple of £100,000. For a specified budget of £110 million, the optimal set of risk reduction options is according to Table IV.

TABLE IV

OPTIMAL SETS OF RISK REDUCTION OPTIONS FOR THE RISK OF TRAIN COLLISION ACCIDENT

<table>
<thead>
<tr>
<th>Budget [x £10,000]</th>
<th>Optimal set of options</th>
<th>Cost of option [x £100,000]</th>
<th>Removed Risk [x £100,000]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1-3,5,6,16,20</td>
<td>1100</td>
<td>7446</td>
</tr>
<tr>
<td>26,30, 38,40-42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-46, 48-50, 53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60, 62-66, 68, 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73-75, 77-80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The largest running time of the budget allocation algorithm, on a computer with processor Intel(R) Core(TM) 2 Duo CPU T9900 @ 3.06 GHz, was 0.015s!

III. CONCLUSIONS

1. By using the concept ‘amount of removed risk by a risk reduction option’, the problem of optimal allocation of a fixed budget, among a finite number of risk reduction options in the railways industry, can be reduced to an optimisation problem from dynamic programming.
2. For a risk reduction budget Bandi risk reduction options, the running time of the optimal allocation is $O(n \times (B+1))$ (where B is the size of the budget).
3. The optimal solution for 81 available risk reduction options and various fixed budgets has been achieved within a very short time, which makes the developed algorithm a very efficient decision support tool for the railway industry.

REFERENCES

