
 

 

  
Abstract—In many ways, biomedical analysis is analogous to 

possibilistic reasoning. In spite of that, there are hardly any 
applications of possibility theory in biology or medicine. The aim of 
this work is to demonstrate the use of possibility theory in an 
epidemiological study. In the paper, we build the possibility 
distribution for the controlled bloodstream concentrations of any 
physiologically active substance through few approximate 
considerations. This possibility distribution is tested later against the 
empirical histograms obtained from the panel study of the eight 
different physiologically active substances in 417 individuals. 
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substances, bloodstream concentrations. 
 

I. INTRODUCTION 

HE need for mechanisms that help to treat incomplete and 
uncertain knowledge explains the grown-up interest in 

fuzzy systems. Possibility theory seems to be one of the most 
promising concepts in this field, especially for modeling 
complex biological or medical processes. 

Suppose we have a process )(tx , for which we do not have 
enough information available in order to specify its value x  
unequivocally for all times t . In possibility theory, learning 
more about the process )(tx  means restricting the range of 
possible values for x . In fact, possibility distributions hold 
negative information. They do not support but exclude facts 
[2,4,6,9]. 

This is exactly how it goes in biomedical studies. Due to the 
lack of precise mathematical techniques for dealing with 
systems comprising a very large number of interacting 
elements or involving a large number of variables, the 
information about biomedical processes mostly has a negative 
character: we know what cannot be better than what can be. 
(For example, without measurement we do not know what the 
systolic blood pressure can be for a healthy person; however, 
we do know that it cannot be higher than 160 mmHg or lower 
than 90 mmHg.) Biomedical studies, going from approximate 
data and extracting meaningful information from massive 
data, lead to a restriction on possible values of a process )(tx . 
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However, despite this visible analogy between biomedical 
and possibilistic reasoning, there are not many cited 
applications of possibility theory in life sciences. 

The aim of our work is to demonstrate the use of possibility 
theory in an actual biomedical (epidemiological) study. In 
particular, our goal is to obtain the possibility distribution for 
the bloodstream concentrations of any physiologically active 
substance. 

II. BUILDING THE POSSIBILITY DISTRIBUTION THROUGH 
APPROXIMATE CONSIDERATIONS 

It is known that the bloodstream concentration of any 
physiologically active substance (say a hormone, protein, 
steroid, glucose, triglyceride or uric acid) is controlled by two 
conflicting processes: secretion and utilization. The process of 
secretion is responsible for production of the substance and its 
release into the blood stream, while the utilization process 
removes the substance from the blood through consumption or 
degradation [7]. 

Though for different substances these processes may be 
very much different (by their nature), we believe that the 
following assumptions hold for all of them: 

1. If the bloodstream substance is controlled by the secretion-
utilization processes, its level can never drop to zero. In 
other words, zero concentration of the controlled 
physiologically active substance is absolutely impossible. 

2. A very high level of the controlled substance is impossible 
too, but not quite much as zero level. It is so because the 
precise highest limit for bloodstream concentrations of a 
given substance does not exist. Therefore, the possibility of 
high concentrations must vanish only asymptotically. 

3. For each controlled substance, it must be the level of the 
equilibrium between the secretion and utilization 
processes, that the concentration of the substance is 
possible without any restriction. The further from the 
equilibrium in either side, the less the concentration is 
possible. 

4. The function representing the distribution of possible 
bloodstream concentrations for a given controlled 
substance must be continuous. 
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5. In addition, this possibility distribution function must be 
finite together with its derivatives of at least the first and 
second orders. 

Let the function )(Pos x  be the possibility distribution for 
the controlled bloodstream concentrations x  of a given 
substance: 

[ ]1,0)(Pos
0

∈
∞<≤x

x     . (1) 

Then the assumption 1 can be written down as follows: 

0)0(Pos =     . (2) 

From the assumption of continuity, it follows that the 
function )(Pos x  must be defined at every point in the vicinity 
of zero: 

)0(Pos)0(Pos0 +==     . (3) 

Hence, near zero the function )(Pos x  takes the form: 
m

x
xx ~)(Pos

0→
 (4) 

where m  is some positive parameter. It follows then, that 
according to the assumption of finiteness, this parameter must 
not be less than 1: 

( ) ∞<− −

→

2

0
2

2

1~)(Pos m

x

xmm
dx

xd     . (5) 

Since the only function that can vanish asymptotically while 
be finite at zero is the exponential function of a negative 
argument, the assumption 2 can be expressed mathematically 
as follows 

( )s
x

xx α−
∞→

exp~)(Pos     , (6) 

where α  and s  are positive parameters. This expression will 
also satisfy the assumption of finiteness at zero, if the 
parameter s  is not less than 1 when 1=m . 

The assumption 3 means that the function )(Pos x  reaches 
its maximum at the level of the equilibrium 0x : 

0)(Pos 0 =x     . (7) 

Besides, this assumption requires that the )(Pos x  must be a 
monotonic function ascending before the level 0x  and 
descending afterward: 
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xxx

xxx
xx     . (8) 

Considering the expressions (4)-(8) together and setting the 
parameters as 
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we get that the function )(Pos x  should take the form: 
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z
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1exp),;(Pos     . (10) 

The only parameter of the this function that cannot be equal 
to zero is the level of the equilibrium 0x . So, the “origin” 
form of the function (10) will be 

zzezz −=≡ 1)(Pos)0,0;(Pos     . (11) 

We believe that the function )(Pos z  represents the 
possibility distribution for the normally controlled 
bloodstream concentrations of any physiologically active 
substance. 

III. RELATION BETWEEN THE POSSIBILITY AND PROBABILITY 
DISTRIBUTIONS 

Let dxxp )(  be the probability that the controlled 
bloodstream concentration of a given substance is found near 
the value x , and )(xp  be the probability distribution at this 
value. As to the relation between the possibility distribution 

)(Pos x  and the corresponding probability distribution )(xp , 
we make the following assumptions: 

A. If the concentration x  is impossible, it cannot be probable 
either [10]. The opposite is not true: the concentration x  
may be not probable, but yet possible. 

B. If the concentration x  is possible without any restriction, it 
must be also the most probable. 

From the assumptions A and B, it immediately follows: 

0)()0()(
0)(Pos

=∞==
=

ppzp
z

   , (12) 

max
z

ppzp ==
=

)1()(
1)(Pos

    . (13) 

These two equalities mean that the probability distribution 
)(zp  must have approximately the same behavior as the 

possibility distribution )(Pos z : the function )(zp  must 
ascend (not necessarily monotonically) throughout the interval 
( )1;0 , attain the maximum maxp  at 1=z , and then descend all 
through the interval ( )∞;1 . 

Let ( )zβ  denotes the ratio of the function )(zp  to the 
function )(Pos z : 

( ) ( )
)(Pos z

zpz =β     ; (14) 

let us estimate the range of the ratio ( )zβ  in the intervals ( )1;0  

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:1, No:5, 2007 

239International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:1
, N

o:
5,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
45

53
.p

df



 

 

and ( )∞;1 . 
According to the assumption A, the minimum of the ( )zβ  

may be zero 

( ) ( )
( ) ( ){ } 0

0)(Pos
minmin min

;11;0
≥

>
==

∞∨∈ z
zpz

z
ββ      (15) 

and the maximum of the ( )zβ  is finite 

( ) ( )
( ) ( )

∞<
⎭
⎬
⎫

⎩
⎨
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<<
<≤

==
∞∨∈ 1)(Pos0

0maxmax max
max

;11;0 z
pzpz

z
ββ    , (16) 

hence, the ratio ( )zβ  must have the limited variation. 
Thus, we can conclude that the possibility distribution 

)(Pos z  can predict with fair certainty the trend for the 
probability distribution )(zp : 

( ) ( ) ( ) )(Posˆ~
;11;0

zzp
z

β
∞∨∈

    , (17) 

where 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∈= maxmin ;constˆ βββ     . (18) 

 

IV. TESTS FOR ASSOCIATION BETWEEN P(Z) AND POS(Z): 
EXAMPLE OF A REAL-LIFE STUDY 

To empirically proof these conclusions, we will use the data 
obtained from the panel study of the bloodstream 
concentrations of the different physiologically active 
substances in diabetic patients done by Prof. S. Weitzman of 
the Ben-Gurion University of the Negev and his colleagues 
[1].  

These data were collected in 1997-2003 years. Participants 
(417 people) were adult patients with diabetes mellitus as well 
as healthy individuals. During the observation period, in 
different time, each participant completed several tests for the 
levels of albumin, cholesterol, glucose, hemoglobin HbA1c, 
low- and high-density lipoproteins (LDL and HDL), 
triglyceride and uric acid. 

The Fig. 1 shows the empirical histograms for the tested 
levels along with the kernel density and the possibility 
function )(Pos z . 

 
 
 
 
 
 
 
 
 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
04

3
0.

45
7

K
er

ne
l D

en
si

ty

0.
00

0
0.

98
3

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = Albumin/5.00

Density Kernel density Possibility function

Albumin

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
03

2
2.

17
3

Ke
rn

el
 D

en
si

ty

0.
00

0
1.

98
8

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = Cholesterol/187.00

Density Kernel density Possibility function

Cholesterol

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
01

5
1.

15
6

Ke
rn

el
 D

en
si

ty

0.
00

0
1.

04
1

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = Glucose/118.00

Density Kernel density Possibility function

Glucose

 

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:1, No:5, 2007 

240International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:1
, N

o:
5,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
45

53
.p

df



 

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
Po

ss
ib

ilit
y 

di
st

rib
ut

io
n

0.
03

0
2.

08
4

K
er

ne
l D

en
si

ty

0.
00

0
2.

15
6

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = HbA1c/6.90

Density Kernel density Possibility function

HbA1c

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
03

4
1.

80
9

K
er

ne
l D

en
si

ty

0.
00

0
1.

95
5

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = HDL/46.00

Density Kernel density Possibility function

HDL

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
02

4
1.

56
2

K
er

ne
l D

en
si

ty

0.
00

0
1.

42
5

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = LDL/110.00

Density Kernel density Possibility function

LDL

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
00

9
0.

73
5

K
er

ne
l D

en
si

ty

0.
00

0
0.

75
0

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = Triglyceride/128.00

Density Kernel density Possibility function

Triglyceride

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
P

os
si

bi
lit

y 
di

st
rib

ut
io

n

0.
02

2
1.

51
4

K
er

ne
l D

en
si

ty

0.
00

0
1.

58
2

D
en

si
ty

.5 1.5 2.5 3.5 4.50 1 2 3 4 5
z = Uric Acid/4.70

Density Kernel density Possibility function

Uric Acid

 
Fig. 1 The empirical histograms for the tested bloodstream levels of 

the different physiologically active substances 
 
To test association between the empirical distribution )(zp  

for the given substance and the function )(Pos z , we computed 
Pearson’s correlation coefficient between the corresponding 
kernel density (used as an approximation of the )(zp ) and the 

)(Pos z , and also estimated the linear regression model of the 
kernel density on the )(Pos z ; the results of these tests are 
presented in the Tables I and II. 

TABLE I 
CORRELATION BETWEEN  

THE KERNEL DENSITY AND THE POSSIBILITY FUNCTION POS(Z). 

Correlation coefficient with Pos(z) 
in the interval: Kernel density 

for: 
0 ≤ z ≤ 1 1 < z < ∞ 

Albumin 0.983* 0.874* 

Cholesterol 0.963* 0.717* 

Glucose 0.828* 0.888* 

HbA1c 0.891* 0.857* 

HDL 0.955* 0.850* 

LDL 0.930* 0.788* 

Triglyceride 0.980* 0.901* 

Uric Acid 0.660* 0.920* 

Note: * indicates that the significance is less than 0.00005. 
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TABLE II 
LINEAR REGRESSION OF  

THE KERNEL DENSITY ON THE POSSIBILITY FUNCTION POS(Z). 

Regression coefficient on Pos(z) 

in the interval: 
Kernel density 

for: 
0 ≤ z ≤ 1 1 < z < ∞ 

Albumin 0.452* 0.313* 

Cholesterol 1.649* 1.407* 

Glucose 0.779* 0.830* 

HbA1c 1.549* 1.303* 

HDL 1.418* 1.153* 

LDL 1.198* 0.989* 

Triglyceride 0.679* 0.533* 

Uric Acid 1.027* 1.008* 

Note: * indicates that the significance is less than 0.00005. 
 
It can be readily seen from these tables that all the empirical 

probability densities of the tested physiologically active 
substances demonstrate remarkable association with the 
possibility function (11).  

As it follows from the Table II, the kernel density for a 
given substance can be predicted based on the possibility 
distribution )(Pos z . For example, for albumin, the predicted 
kernel density )(ˆ zρ  is: 

( )
( )⎩

⎨
⎧

∞<<⋅±
≤≤⋅±= zz

zzz 1),(Pos004.0452.0
10),(Pos004.0452.0)(ρ̂     . (19) 

This finding supports the supposition made before about 
probabilities through possibilities prediction.  

 

V. NORMAL VALUES FOR PHYSIOLOGICALLY ACTIVE 
SUBSTANCES 

A fuzzy set ℵ with the membership function )(xℵμ  such 
that 1)( 0 =ℵ xμ  for 0xx =  can be viewed as an elastic 
constraint on the realization of a variable x . 

Under such an interpretation of a fuzzy set, )(xℵμ  can be 
regarded as a possibility distribution )(Pos x , which restricts a 
possibilistic variable x  [3-5]. 

Thus, )(x′ℵμ  shows the possibility degree of the event 
xx ′= , and the other way around: the possibility function 

)(Pos x′  shows the degree of membership in the fuzzy set ℵ  
for the value xx ′= . 

Accordingly, considering the expression (11) as the 
membership function )(xnormalμ  for the normally controlled 
bloodstream concentrations z, we can obtain the normal range 
for any physiologically active substance.  

Indeed, let the concentration z′  be normal if the 
membership function 9.0)( ≥′znormalμ , then, solving the 
equation 

9.01 =− zze     , (20) 

we will get the following low and upper bounds for the normal 
range: 

[ ]5.1;6.0∈normalz     . (21) 

 
The Table III presents the comparison between the normal 

values defined according to U.S. National Institutes of Health 
and American Heart Association on large populations of 
healthy individuals [8] and the bounds defined by the 
expression (21). 

 
TABLE III 

NORMAL RANGE COMPARISON 

Substance and its units 
of measurement 

Empirical  
normal values 

Low and upper bounds of 
the interval 

 that Pos(z)=0.9 

Albumin (g/dL) 3.4 ÷ 5.4 3.03 ÷ 7.68 

Cholesterol (mg/dL) High level: > 240 113.14 ÷ 287.05 

Glucose (mg/dL) 70 ÷ 126 71.39 ÷ 181.13 

HbA1c (%) High level: > 10.2 4.17 ÷ 10.59 

HDL (mg/dL) High level: 60 27.83 ÷ 70.61 

LDL (mg/dL) High level: 160-189 66.55 ÷ 168.85 

Triglyceride (mg/dL) High level: 200-499 77.44 ÷ 196.48 

Uric Acid (mg/dL) 3.0 ÷7.0 2.84 ÷ 7.21 

 
As it can be easily seen from this table, there is a great deal 

of similarity between the empirically defined normal values 
and the solutions of the equation 9.0)(Pos =z . 

This speaks in favor of the assumption that the function 
)(Pos z  can represent the possibility distribution for the 

normally controlled bloodstream concentrations of any 
physiologically active substance. 
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