Chikungunya Protease Domain–High Throughput Virtual Screening
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Chikungunya Protease Domain–High Throughput Virtual Screening

Authors: Surender Singh Jadav, Venkatesan Jayaprakash, Arijit Basu, Barij Nayan Sinha

Abstract:

Chikungunya virus (CHICKV) is an arboviruses belonging to family Tagoviridae and is transmitted to human through by mosquito (Aedes aegypti and Aedes albopictus) bite. A large outbreak of chikungunya has been reported in India between 2006 and 2007, along with several other countries from South-East Asia and for the first time in Europe. It was for the first time that the CHICKV outbreak has been reported with mortality from Reunion Island and increased mortality from Asian countries. CHICKV affects all age groups, and currently there are no specific drugs or vaccine to cure the disease. The need of antiviral agents for the treatment of CHICKV infection and the success of virtual screening against many therapeutically valuable targets led us to carry out the structure based drug design against Chikungunya nSP2 protease (PDB: 3TRK). Highthroughput virtual screening of publicly available databases, ZINC12 and BindingDB, has been carried out using the Openeye tools and Schrodinger LLC software packages. Openeye Filter program has been used to filter the database and the filtered outputs were docked using HTVS protocol implemented in GLIDE package of Schrodinger LLC. The top HITS were further used for enriching the similar molecules from the database through vROCS; a shape based screening protocol implemented in Openeye. The approach adopted has provided different scaffolds as HITS against CHICKV protease. Three scaffolds: Indole, Pyrazole and Sulphone derivatives were selected based on the docking score and synthetic feasibility. Derivatives of Pyrazole were synthesized and submitted for antiviral screening against CHICKV.

Keywords: Chikungunya, nsP2 protease, ADME filter, HTVS, Docking, Active site.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083017

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450

References:


[1] Aida, I., "Numerical Computation of a Tsunami Based on a Fault Origin Model of an Earthquake", J. Seismol. Soc. Japan, 27, 141-154, 1974.
[2] Ammon, C. J., Ji, C., Thio, H.-K., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichinose, G., Polet, J. & Wald, D., "Rupture Process of the 2004 Sumatra-Andaman Earthquake", Science, 308(5725), 1133 - 1139, 2005.
[3] Arreaga-Vargas, P., Ortiz, M. & Farreras, S.F., "Mapping the Possible Tsunami Hazard as the First Step Towards a Tsunami Resistant Community in Esmeraldas, Ecuador. In K. Satake (Ed.), Tsunamis: Case Studies and Recent Developments (pp. 203 - 215). Netherlands: Springer, 2005.
[4] Cho, Y.-S., Jin, S.-B., & Lee, H.-J.,"Safety analysis of Ulchin Nuclear Power Plant against Nihonkai-Chubu Earthquake Tsunami", Nuclear Engineering and Design, 228(1-3), 393-400, 2004.
[5] Dube, S. K., Sinha, P.C., & Roy, G.D. , "The Effect of a Continuously Deforming Coastline on the Numerical Simulation of Storm Surge in Bangladesh", Mathematics and Computers in Simulation, 28, 41 - 56, 1986.
[6] Inan, A., & Balas, L. A, "Moving Boundary Wave Run-Up Model. In Y. Shi, Albada, G.D.v., Dongarra", J., & Sloot, P.M.A. (Ed.), Computational Science - ICCS (pp. 38-45). Berlin / Heidelberg: Springer, 2007.
[7] Karim, M. F., Roy, G.D., Ismail, A.I.M., & Meah, M.A. , "A Shallow Water Model for Computing Tsunami along the West Coast of Peninsular Malaysia and Thailand Using Boundary-Fitted Curvilinear Grids" Science of Tsunami Hazards, 26(1), 21 - 41, 2007.
[8] Kowalik, Z., Knight, W., & Whitmore, P. M.., "Numerical Modeling of the Tsunami: Indonesian Tsunami of 26 December 2004",Sc. Tsunami Hazards, 23(1), 40 - 56, 2005.
[9] Lynch, F. R., & Gray, W.G., "Finite Element Simulation of Flow in Deforming Regions, 1980. J. Comput. Phys., 36, 135 - 153, 1980.
[10] Okada, Y., "Surface Deformation due to Shear and Tensile Faults in a Half Space", Bull, Seism. Soc. Am., 75, 1135 - 1154, 1985.
[11] Papadopoulos, G. A., Caputo, R., McAdoo, B., Pavlides, S., Karastathis, V., Fokaefs, A., Orfanogiannaki, K. & Valkaniotis, S.," The large tsunami of 26 December 2004: Field observations and eyewitnesses accounts from Sri Lanka, Maldives Is. and Thailand", Earth Planets Space, 58, 233 - 241, 2006.
[12] Roy, G. D., Karim, M. F., & Ismail, A. M., "A 1-D Shallow Water Model for Computing Inland Inundation due to Long Waves Using a Moving Boundary", Far East J. Appl. Math., 28(3), 395 - 408, 2007.
[13] Tanioka, Y., Yudhicara, Kususose, T., Kathiroli, S., Nishimura, Y., Iwasaki, S. & Satake, K. "Rapture process of 2004 great Sumatra- Andaman earthquake estimated from tsunami waveforms," Earth Planets Space, 58, 203 - 209, 2006.
[14] Viana-Baptista, M. A., Soares, P.M., Miranda, J.M. & Luis, J.F., "Tsunami Propagation along Tagus Estuary (Lisbon, Portugal) Preliminary Results", Science of Tsunami Hazards, 24(5), 329 - 338, 2006.
[15] Wijetunge, J. J., "Tsunami on 26 December 2004: Spatial distribution of tsunami height and the extent of inundation in Sri-Lanka, Science of Tsunami Hazard, 24(3) 225-239, 2006.