Effect of Recycle Gas on Activity and Selectivity of Co-Ru/Al2O3 Catalyst in Fischer- Tropsch Synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
Effect of Recycle Gas on Activity and Selectivity of Co-Ru/Al2O3 Catalyst in Fischer- Tropsch Synthesis

Authors: A.A.Rohani, B.Hatami, L.Jokar, F.khorasheh, A.A.Safekordi

Abstract:

In industrial scale of Gas to Liquid (GTL) process in Fischer-Tropsch (FT) synthesis, a part of reactor outlet gases such as CO2 and CH4 as side reaction products, is usually recycled. In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol. % of feed) to the feed stream. The effect of temperature and feed flow rate, are also inspected. The results show that low amounts of CO2 in the feed stream, doesn`t change the catalyst activity significantly but increasing the amount of CO2 (more than 10 vol. %) cause the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and doesn`t affect the catalyst performance. Increasing feed flow rate has negative effect on both CO conversion and heavy component selectivity. By raising the temperature, CO conversion will increase but there are more volatile components in the product. The effect of CO2 on the catalyst deactivation is also investigated carefully and a mechanism is suggested to explain the negative influence of CO2 on catalyst deactivation.

Keywords: Alumina, Carbon dioxide, Cobalt catalyst, Conversion, Fischer Tropsch, Selectivity

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082897

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931

References:


[1] M.E. Dry, Catal. Today 71(2002)
[2] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107(2007)1692
[3] A. Steynberg,M. Dry (Eds.), Fischer-Tropsch Technology, Stud. Surf. Sci.Catal. 152 (2004)
[4] R.L. Espinoza, A.P. Steynberg, B. Jager, A.C. Vosloo, Appl. Catal. A 186 (1999)
[5] J. Xiong, Y. Ding, T. Wang, L. Yan, W. Chen, H. Zhu, Y. Lu, Catal. Lett. 102( 2005)
[6] H. Ming, B.G. Baker, Appl. Catal. A: Gen. 123(1995) 23
[7] G.Z. Bian, T. Mochizuki, N. Fujishita, H. Nomoto, M. Yamada, Energy Fuels 17 (2003)799
[8] H. Schulz, G. Schaub, M. Claeys, T. Riedel, Appl. Catal. A 186 (1999) 215
[9] K.W. Jun, S.J. Lee, H. Kim, M. Choi, K.W. Lee, Stud. Surf. Sci. Catal. 114 (1998) 345
[10] T. Riedel, G. Schaub, K.W. Jun, K.W. Lee, Ind. Eng. Chem. Res. 40 (2001) 1255 J
[11] D. Schanke, S. Vada, E.A. Blekkan, A.M. Hilmen, A. Hoff, A. Holmen, J. Catal. 156 (1995) 85
[12] S.M.Kim, J.W.Bae, Y.J.Lee, K.W.Jun, Catalysis Communications 9 (2008) 2269
[13] Das T., Jacobs G. Patterson P.M., Conner W. A., Li. J., Davis B.H., Fuel 82 (2003)
[14] Hilmen A.M., Schanke D., Hanssen K.F., App. Cat. 186 (1999) 169
[15] Kiss G., Kliewer C.E., DeMartin G.J., Culross C.C., Baumgartner J.E., J. Cat. 217 (2003) 127
[16] Dry, M.E.; Shingles, T.; Boshoff, L.J.;Botha, C.S; J. of Catal. 17 (1970) 347
[17] Dry, M.E.; Shingles, T.; Botha, C.S; J. of Catal. 17 (1970) 341
[18] Uner D. O., M. Pruski, B. C. Gestein and T. S. King, J. Catal. 146 (1994) 530
[19] Riedel. T. et al., Industrial Engineering Chemistry Research 215-227 (2001)
[20] P. J. Van., Berge. J. Van de Loosdrecht, S. Barradas, A. M. Van der kraan, Catalysis Today, 58 (2000) 321
[21] A. M. Hilman, D. Schanke, K. F. Hanssen, Applied catalysis A. 186 (1999)169
[22] Christopher J. Bertole, Challes A. Mims, Gabor Kiss, J. Catal., 38 (2002)