Study of Water on the Surface of Nano-Silica Material: An NMR Study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Study of Water on the Surface of Nano-Silica Material: An NMR Study

Authors: J. Hassan

Abstract:

Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.

Keywords: Nano-Silica, surface water, NMR

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082687

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478

References:


[1] J. R. Zimmerman, W. E. Brittin, J. Phys. Chem. 61 (1957) 1328.
[2] H. M. McConnel, J. Chem. Phys. 28 (1958) 430.
[3] D. E. Woessner, J. Chem. Phys. 35 (1960) 41.
[4] J. P. Carver, R.E. Richards, J. Magn. Reson. 6 (1972) 89.
[5] R. V. Mulkern, A. R. Bleier, I. K. Adzamili, R. G. S. Spencer, T. Sandor, A. Jolesz, Biophys. J. 55 (1989) 221.
[6] G. Pake, J. Chem. Phys. 16 (1948) 327.
[7] E. Meirovitch, T. Krant, S. Vega, J. Phys. Chem. 87 (1983) 1390-1396.
[8] R. E. Jacobs, S. H. White, J. Am. Chem. Soc. 1984, 106(2) 6909-6912.
[9] J. Hassan, E. Reardon, H. Peemoeller, Microporous Mesoporous Materials, 122 (2009) 121.
[10] A. Spanoudaki, B. Albela, L. Bonneviot, M. Peyrard, Eur. Phys. J. E. 17, 21-27 (2005).
[11] A. J. Benesi, M. W. Grutzeck, Bernie, O'Hare, J. W. Phair, Langmuir, 21 (2005) 527.
[12] G. Trausch, D. Canet, P. Turq, Chem. Phys. Lett. 456 (2008) 262.
[13] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press: London, Ch.7, 1961.
[14] A. Weiss, N. Weiden, in: J. Smith (Ed.), Advances in Nuclear Quadrupole Resonance, London, P149, 1980.
[15] D. Canet, Nuclear Magnetic Resonance: concepts and methods, John Wiley & Sons Ltd. England, P55, 1991.
[16] H. W. Spiess, B. B. Garrett, R. K. Sheline, J. Chem. Phys. 51 (1969) 1201.
[17] P. Waldstein, S. W. Rabideau, J. Chem. Phys. 41 (1969) 3407.
[18] C. P. Slichter, Principles of Magnetic Resonance, Springer, New York, Ch.3, 1996.
[19] D. W. Hwang, A. K. Sinha, C-Yuan Cheng, T-Yan Yu, L. P. Huang. J. Phys. Chem. B, 105 (2001) 5713.
[20] R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, 1987.
[21] RV. Mulkern , A. Bleier, T. Sandor, F. Jolesz, , Magn Reson Med. 14 (1990) 377.
[22] A. D. Bain, J. A. Cramer, J. Phys. Chem. 97 (1993) 2884.
[23] J. Hassan, Ph.D. Thesis, University of Waterloo, Ontario, Canada, 2007.