Takagi-Sugeno Fuzzy Control of Induction Motor

Allouche Moez, Souissi Mansour, Chaabane Mohamed and Mehdi Driss

Abstract—This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non-linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilize the induction motor and guarantee a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller’s effectiveness.

Keywords—Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)

I. INTRODUCTION

The great interest to the induction motor is linked to its large industrial application field as well as its properties of reliability, robustness and low cost. In the last two decades, many studies have been developed around fuzzy law control [1], [2], [3], [4], [5]. Control of induction motor is well known to be difficult owing to the fact that the dynamic model is nonlinear, its electrical parameters drift with temperature and the flux which must be controlled was not available for feedback. We try in this paper to design a fuzzy feedback control that guarantee both stability and disturbance rejection. We suppose that all the state variables susceptible to be controlled are available for feedback. Several contributions on the design of feedback control have been presented [6], [7], [8], [9]. Paper [10] deal with methods based in induction model linearization around a working point in order to apply linear control theory. This solution limited the effectiveness of the feedback controller. To overcome this problem a fuzzy tracking control design based on Takagi-Sugeno (T-S) model is developed. First, the TS fuzzy model is used to represent a nonlinear system. A tracking performance, which is related to tracking error for all bounded known load torque inputs, is formulated. The global linear fuzzy model is composed of set linear models witch are interpolated by membership functions. The stability conditions of the induction motor with the fuzzy controller are converted in terms of LMI problem which can solved very efficiently using the optimisation techniques. The premise variables are assumed to be measurable.

This paper is organised as follows: in section 2, an open-loop control strategy is presented which include the physical model expression. Section 3, deal with the synthesis of a fuzzy tracking control with optimal performance. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMIs). In section 4, simulation results are and given to highlight the effectiveness of the proposed control law. The last section gives a conclusion on the main works developed in this paper.

II. OPEN-LOOP CONTROL STRATEGY

A. Physical model of induction motor

Under the assumptions of linearity of the magnetic circuit, the electromagnetic dynamic model of the induction motor in the synchronously d-q reference frame can be described as:

\[x(t) = f(x(t)) + g(x(t))u(t) + v(t) \] (1)

where

\[
\begin{align*}
-\gamma i_{sd} + \psi_{rd} + \frac{\psi_{m}}{L_s} & - K_i n_p \psi_{rd} \\
-\gamma i_{sq} - K_s n_p \psi_{rd} + \frac{\psi_{m}}{L_s} & - \psi_{rq} \\
\end{align*}
\]

\[
\begin{align*}
\frac{M}{\tau_r} \psi_{rd} - \frac{1}{\tau_r} & \psi_{rd} + (w_s - n_p \psi_{m}) \psi_{rd} \\
\frac{n_p M}{\tau_r} \psi_{rd} & - \psi_{rq} - \psi_{rq} \psi_{rd} - \frac{1}{\tau_r} \phi_w m
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\phi_w & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sigma L_s} & 0 & 0 & 0 \\
\end{bmatrix}
\end{align*}
\]

\[
x(t) = [i_{sd} i_{sq} \psi_{rd} \psi_{rq} \psi_{m}]^T
\]

\[
u(t) = [u_{sd} u_{sq}]^T,
\]

\[
\gamma = \left(\frac{1}{\sigma L_s} + \frac{1 - \sigma}{\sigma L_s} \right),
\]

\[
\tau_s = \frac{L_s}{R_s}, \sigma = 1 - \frac{M^2}{L_s L_r}
\]

In which \(\psi_{m} \) is the rotor speed, \(w_s \) is the electrical speed of stator, \(\psi_{rd}, \psi_{rq} \) are the rotor fluxes, \(\{i_{sd}, i_{sq}\} \) are the stator currents and \(\{u_{sd}, u_{sq}\} \) are the stator voltages. The load torque \(C_T \) is the known step disturbance. The motor parameters are: moment of inertia \(J \), rotor and stator resistances \((R_s, R_r) \), inductances \((L_s, L_r) \), mutual inductance \(M \), friction coefficient \(f \) and number of poles pairs \(n_p \).

B. Open-loop control

In this paragraph, we explore the structure of the open-loop control which will then be used in the next section to construct the T-S fuzzy model of the induction motor. After replacing the state variables \(\{i_{sd}, i_{sq}, \psi_{rd}, \psi_{rq}, w_m\} \) of the induction motor by the reference signals \(x_r(t) = \)
(i_{sdc}, i_{sqc}, \Psi_{rdc}, 0, w_{mc}) in (1), we obtain the following model [6].

\[
\begin{align*}
\frac{d}{dt} i_{sdc} &= -\gamma i_{sdc} + w_s i_{sqc} + \frac{K_s}{\tau_r} \Psi_{rdc} + \frac{1}{\sigma_L} J_{sdc} \\
\frac{d}{dt} i_{sqc} &= -w_s i_{sdc} - \gamma i_{sqc} - K_s n_p w_{mc} \Psi_{rdc} + \frac{1}{\sigma_L} J_{sqc} \\
0 &= -(w_s - n_p w_{mc}) \Psi_{rdc} + \frac{1}{\tau_r} i_{sqc} \\
\frac{d}{dt} w_{rdc} &= \frac{M}{\tau_r} i_{sdc} - \frac{1}{\tau_r} \Psi_{rdc} \\
\frac{d}{dt} w_{mc} &= \frac{M}{\tau_r} \Psi_{rdc} i_{sqc} - \frac{1}{\tau_r} w_{mc} - \frac{1}{\sigma_L} C_r
\end{align*}
\]

The two last equations in (2) lead to the stator current reference:

\[
\begin{align*}
i_{sdc} &= \frac{\Psi_{rdc}}{n_p} + \frac{\tau_r}{\sigma_L} \Psi_{rdc} \\
i_{sqc} &= \frac{\Psi_{rdc} w_{mc}}{n_p M} + \frac{\tau_r}{\sigma_L} w_{mc} + \frac{d}{dt} w_{mc}
\end{align*}
\]

From the first two equations in (2), we obtain the expression of the open-loop control:

\[
\begin{align*}
u_{sdc} &= \sigma L_s \frac{d}{dt} i_{sdc} + \gamma i_{sdc} - w_s i_{sqc} - \frac{K_s}{\tau_r} \Psi_{rdc} \\
u_{sqc} &= \sigma L_s \frac{d}{dt} i_{sqc} + \gamma i_{sqc} + w_s i_{sdc} + K_s n_p w_{mc} \Psi_{rdc}
\end{align*}
\]

According to (2), the electrical speed reference of the stator is:

\[
w_{sc} = n_p w_{mc} + \frac{M}{\tau_r} \Psi_{rdc} i_{sqc}
\]

III. FUZZY CONTROLLER DESIGN

It is known that the effect of external disturbance will deteriorate the control performance of the fuzzy control system and even lead to instability of the control system. Therefore, several works deal with the synthesis of a fuzzy control law with \(H_{\infty}\) performance [11], [12], [13], [14]. In this section, a feedback control law with \(H_{\infty}\) attenuation is proposed. Lyapunov approach is used to derive quadratic stability condition. The problem is expressed in an LMI form by using some matrix properties.

A. T-S Fuzzy model of induction model

The Takagi-Sugeno (T-S) fuzzy model is employed here to approximate the induction model system in the synchronous d-q frame rotating with electromagnetic field-oriented. The principle behind field oriented control is that the machine flux and torque are controlled independently, in a similar fashion to a separately excited DC machine. In consequently the rotor flux vector is \((\Psi_{rd}, \Psi_{rq})\) aligned to the d-axis and the following results can be obtained:

\[
\begin{align*}
\Psi_{rd} &= \Psi_{rdc} \\
\Psi_{rq} &= 0
\end{align*}
\]

The electrical speed of the stator defined in the synchronous d-q frame rotating with electromagnetic field-oriented is obtained from (3) with replacing \(w_{mc}\) by \(w_{m}\) and \(i_{sqc}\) by \(i_{sq}\) the current measurement as follows:

\[
w_s = n_p w_{m} + \frac{M}{\tau_r} \Psi_{rdc} i_{sq}
\]

If we replace in (1) the electrical speed of the stator by the expression defined by (7), the nonlinear model of the induction motor can be written as the state space form:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) + Dw(t) \\
y &= C x(t)
\end{align*}
\]

where

\[
A = \begin{bmatrix}
-\gamma & \left(\frac{n_p w_{m} + K_s}{\tau_r} i_{sq}\right) & K_s n_p w_{m} & 0 \\
-\gamma & -K_s n_p w_{m} & \frac{K_s}{\tau_r} & 0 \\
0 & 0 & -\frac{1}{\tau_r} & \frac{M}{\tau_r} i_{sq} \\
0 & \frac{M}{\tau_r} & -\frac{1}{\tau_r} & -\frac{1}{\sigma_L} J_{sdc} - \frac{1}{\sigma_L} C_r
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
\frac{1}{\tau_r} & 0 & 0 & 0 \\
0 & \frac{1}{\sigma_L} & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}^T, \\
C = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
0 & 0 & 0 & -\frac{1}{\sigma_L}
\end{bmatrix}^T,
\]

\(w = C_r\).

Considering the sector of nonlinearities of the terms \(z_j = x_j \in [z_{j_{\min}}, z_{j_{\max}}]\) of the matrix \(A(z(t))\) with \(j = 1, 2, 3, 8\). Consider the following:

\[
\begin{align*}
z_1(t) &= i_{sd}(t) \\
z_2(t) &= i_{sq}(t) \\
z_3(t) &= w_{mc}(t)
\end{align*}
\]

Thus, we can transform the non linear terms under the following shape:

\[
\begin{align*}
z_j(t) &= F_{1j}(z_{j_{\max}} + F_{2j}(z_{j_{\min}}) z_j \in [z_{j_{\min}}, z_{j_{\max}}]: j = 1, 2, 3
\end{align*}
\]

The fuzzy model is described by fuzzy If-Then rules and will be employed here to deal with the control design problem for the induction motor. The ith rule of the fuzzy model for the nonlinear system is of the following form:

Rule Ri

If \((z_1(t) = F_{11}(t))\) and \((z_2(t) = F_{12}(t))\) and \((z_3(t) = F_{13}(t))\)

Then \(\dot{x}(t) = A_i x(t) + B_i u(t) + v(t), i = 1, 2, \ldots, 8\)

The global fuzzy model is inferred as follows:

\[
\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{8} h_i(z(t)) (A_i x(t) + B_i u(t) + v(t))
\end{align*}
\]

where

\[
\lambda_i(z(t)) = \prod_{j=1}^{3} F_{ij}(z_{j_{\max}}) / \sum_{i=1}^{8} \lambda_i(z(t)) = \frac{n_p}{\lambda_i(z(t))}
\]

\[
\sum_{i=1}^{8} \lambda_i(z(t))
\]
for all $t > 0$, $h_i(z(t)) \geq 0$ and $\sum_{i=1}^{8} h_i(z(t)) = 1$.

In our work we consider B and D constant matrixes.

B. Error state model

Considering the global fuzzy linear model of the induction motor structured in the following forms:

$$
\begin{align*}
\dot{x}(t) & = \sum_{i=1}^{8} h_i(z(t))(A_i x(t) + Bu(t) + Dw(t)) \\
y(t) & = C x(t)
\end{align*}
$$ (15)

Define the state reference vector as

$$
x_c = (i_{adc}, i_{sqc}, \Psi_{pdc}, 0, w_{inc})^T
$$

Denoting by $e(t) = x(t) - x_c$ the state tracking errors. The main different for the ordinary PDC controller in [11], [12] is to have a term for the feedback signal of x_c. The new PDC fuzzy controller is constructed as follows [15], [16]:

$$
u(t) = - \sum_{i=1}^{8} h_i(z(t)) K_i e(t)
$$ (16)

The resulting fuzzy error model can be described as

$$
\dot{e}(t) = \sum_{i=1}^{8} h_i(z(t))(A_i e(t) + Bu(t) + A_c x_c + Dw(t))
$$ (17)

In order to avoid static errors, an integral action is added to the new PDC fuzzy controller [14], [17], [18].

$$
u(t) = - \sum_{i=1}^{8} h_i(z(t)) \left[K_i F_i \right] e(t)
$$ (18)

$$
\begin{align*}
\dot{x}_c(t) & = \sum_{i=1}^{8} h_i(z(t)) K_i e(t) \\
s_c(t) & = \sum_{i=1}^{8} h_i(z(t)) K_i e(t)
\end{align*}
$$

Fig (1) shows the implementation scheme of the considered fuzzy control law.

C. LMI formulation for H_∞ performance

The presence of disturbances $\bar{w}(t)$ will deteriorate the tracking control performance of the fuzzy control system. In order to minimize the effect of $\bar{w}(t)$ on $e(t)$ and P is some symmetric positive-definite weighting matrix. The following lemma gives the results of the H_∞ norm bounded.

Lemma 1. If there exists a symmetric and positive definite $X = X^T$ such that the following matrix inequality are satisfied

$$
\begin{bmatrix}
A_i - X \bar{A}_i & BV_i & \gamma^2 I \\
BV_i^T & X & 0 \\
\gamma^2 I & 0 & -I
\end{bmatrix}
$$ (23)

Then for a prescribed γ, H_∞ tracking control performance in (22) is guaranteed via the TS fuzzy model-based state feedback controller (23). The control gain are given by

$$
\kappa_i = Y_i X^{-1}
$$ (24)

Proof.

Consider the Lyapunov function $V(\bar{e}(t)) = \bar{e}^T(t)P\bar{e}(t)$, where $P = P^T > 0$ the common positive matrix. In order to establish to the asymptotic stability of the inequality (22), the time derivative of $V(\bar{e}(t))$ has to satisfy the following condition:

$$
\dot{V}(\bar{e}(t)) < 0
$$ (25)

In order to achieve the H_∞ tracking performance related to the tracking error, for $x_c(t)$, (25) becomes:

$$
\dot{V}(\bar{e}(t)) + \bar{e}^T(t) \bar{e}(t) - \gamma^2 \bar{w}^T(t)\bar{w}(t) < 0
$$ (26)

Replacing $V(\bar{e}(t))$ by its value $\bar{e}^T(t)P\bar{e}(t)$ in (26), the last equation can be written as the following form LMI:

$$
LMI_1 = \sum_{i=1}^{8} h_i(z(t)) \bar{e}^T(t) \bar{G}_i P + P \bar{G}_i^T \bar{e}(t) + \sum_{i=1}^{8} h_i(z(t)) \bar{e}(t)^T \bar{D}_i^T P \bar{e}(t) + \gamma^2 \bar{w}^T(t) \bar{w}(t) < 0
$$ (27)
\[
LMI_1 = \sum_{i=1}^{8} h_i(z(t)) \left[\begin{array}{c}
\mathbf{P}_i^T + P \mathbf{G}_i + I \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] < 0
\]

This main:
\[
LMI_1 = \sum_{i=1}^{8} \left[\sum_{i=1}^{8} h_i(z(t)) \left[\begin{array}{c}
\mathbf{P}_i^T + \mathbf{P} \mathbf{G}_i + \mathbf{I} \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] \right] < 0
\]

Using the Schur’s complement, (31) is equivalent to:
\[
LMI_1 = \left[\begin{array}{c}
\mathbf{P}_i^T + P \mathbf{G}_i \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] < 0
\]

Therefore
\[
LMI_1 = \left[\begin{array}{c}
\mathbf{P}_i^T + P \mathbf{G}_i \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] < 0
\]

After congruence with \(\text{diag} [P^{-1}, I, I]\), inequality (34) becomes:
\[
\left[\begin{array}{c}
\mathbf{P}_i^T + P \mathbf{G}_i \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] < 0
\]

Developed the last equation, (35) can be written as:
\[
\left[\begin{array}{c}
\mathbf{P}_i^T + P \mathbf{G}_i \\
\mathbf{D}_i^T \mathbf{P} - \gamma^2 I
\end{array} \right] < 0
\]
Fig. 2: (a) Rotor speed, (b) Zoom window on rotor speed

Fig. 3: Motor torque

Fig. 4: Stator current norm

Fig. 5: (a) Flux norm, (b) Zoom window on Flux norm

Fig. 6: Stator voltage

By analysis the simulation results, a less tracking errors is observed for the speed and the rotor flux norm in spite of the load torque is applied (Fig.2 a-b and Fig.5 a-b) that show the good performance of the fuzzy control law proposed in terms of pursuit (track) and disturbance rejection. It can be noticed that when the rotor speed reference change of value, the rotor flux norm undergo a weak fluctuation and remains close to its reference value (Fig.5). These results demonstrate and confirm the highlight effectiveness of the proposed control law. The stator current bounded by the saturation function presents an overshoot due to the variation of the rotor speed reference signal.
V. Conclusion

In this paper, we have applied a fuzzy control law of induction machine with H_{∞} guaranteed performance. The shape of the used control law is similar to the one of a PDC control, except that this one is expressed with the error state. The TS fuzzy model is used to represent the induction motor by sets of local state space models which are interpolated by membership functions. A global fuzzy controller is designed by blending all such local state feedback controllers. The stability of the fuzzy closed-loop systems has been analysed using Lyapunov theory combined with an LMI approach. The effectiveness of the proposed controller is demonstrated through numerical simulations.

APPENDIX

The premise variables are bounded as:

$$w_{\text{min}} = -200 \text{ (rd/s)}, \quad w_{\text{max}} = 200 \text{ (rd/s)},$$

$$i_{\text{sd,min}} = -6A, \quad i_{\text{sd,max}} = 6A,$$

$$i_{\text{sq,min}} = -6A, \quad i_{\text{sq,max}} = 6A.$$

The sets of the matrices A, defined in the 2^3 If-then fuzzy rules are given:

$$A_1 = \begin{bmatrix} -289.2 & -242.5 & -185.4 & -8115.5 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} -289.2 & -242.5 & -185.4 & -8115.5 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} -289.2 & -375.5 & -185.4 & -8115.5 & 0 \\ 375.5 & -289.2 & 8115.5 & 185.4 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} -289.2 & -375.5 & 185.4 & -8115.5 & 0 \\ 375.5 & -289.2 & 8115.5 & 185.4 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} -289.2 & -375.5 & 185.4 & -8115.5 & 0 \\ 375.5 & -289.2 & 8115.5 & 185.4 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} -289.2 & -375.5 & 185.4 & -8115.5 & 0 \\ 375.5 & -289.2 & 8115.5 & 185.4 & 0 \\ 4.1 & 0 & -9.1 & -24.5 & 0 \\ 0 & 4.1 & 24.5 & -9.1 & 0 \\ 0 & 0 & -583 & 583 & -0.0341 \end{bmatrix}$$

REFERENCES

Moez ALLOUCHE was born in Sfax, Tunisia, on November 15, 1972. He received the Master degree from Sfax Engineering School (SES), University of Sfax, Tunisia, in 2006. His current research interests robust control, fuzzy logic control, D-stability analysis and applications of these techniques to induction motors.

Mohamed CHAABANE was born in Sfax, Tunisia, on August 26, 1961. He received the Ph.D degree in Electrical Engineering from the University of Nancy, French in 1991. He was associate professor at the University of Nancy and is a researcher at Center of Automatic Control of Nancy (CRAN) from 1988-1992. Actually is a professor in ENI-Sfax. Since 1997, he is holding a research position at Automatic Control Unit, ENIS. The main research interests are in the field of robust control, delay systems, descriptor systems and applications of these techniques to fed-batch processes and agriculture systems. Currently, he is an associate editor of International Journal on Sciences and Techniques of Automatic control computer engineering, IJ-STA (www.sta-tn.com).

Mansour SOUISSI was born in Kerkennah, Tunisia, on April 15, 1955. He received his Ph.D in Physical Sciences from the University of Tunis in 2002. He is Professor in Automatic Control at Preparatory Institute of Engineers of Sfax, Tunisia, Since 2003, he is holding a research position at Automatic Control Unit, National School of Engineers of Sfax, Tunisia. His current research interests robust control, optimal control, fuzzy logic, linear matrix inequalities and applications of these techniques to agriculture systems. Dr Souissi is a member of the organization committees of several national and international conferences (STA, CASA).

Dress MEHDI is currently a Professor at Institute of Technology of Poitiers, France. He is the headmaster of the research group “Multivariable Systems and Robust Control,” in Laboratory of Automatic and Industrial Informatics of Poitiers. His main fields of research include robust control, delay systems, robust root-clustering, descriptor systems, control of industrial processes, etc.