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Abstract—In this study the integration of an absorption heat

pump (AHP) with the concentration section of anustdial pulp and
paper process is investigated using pinch techgoldége optimum
design of the proposed water-lithium bromide AHRhisn achieved

Il. AHP INTEGRATION WITH KRAFT INDUSTRY

A.Kraft Process — Case Study
The Kraft process is a chemical process in whiehpaper

by mInImIZIng the total annual cost. A Compreheaai!ptimization is pulp is produced by wood Ch|ps in a d|gester us|ng

carried out by relaxation of all stream pressumpdras well as heat

exchanger areas involving in AHP structure. It fown that by
applying genetic algorithm optimizer, the total mahcost of the
proposed AHP is decreased by 18% compared to cudted from
simulation.

delignification liquor. Paper pulp is an importasdurce for
producing many kinds of paper products [16]. The
delignification liquor decomposes lignin and sepesathe
cellulosic fibers. The spent delignification liqugBlack
liquor) contains valuable chemical materials thatld be

Keywords—Absorption Heat Pump, Genetic Algorithm, Kraft recovered. Moreover, the residual wood materialslccdoe

Industry, Pinch Technology

. INTRODUCTION

burnt to utilize of its energy content [17]. To neathe liquor
combustible, its solid content must be increasesth® black
liquor concentration section is sometimes the tsglemergy

HE pulp and paper industry is a very large energgonsumer in Pulp and paper mill, this section oflmmian

consumer industry, in the form of heating and aupli
energy to dry liquor in evaporation section andntaintain
critical streams blow temperature limits, respesfiv[1].
More recently, the advanced energy conversion taolgies
such as absorption heat pump (AHP) and tri-germradire
used to improve energy efficiency [2], [3]. Theliatition of
AHPs for heat upgrading in pulp and paper indubrg been
investigated [4]. Also, modeling, design and candion of a
lithium bromide water absorption cycle has beeregtigated
[5], [6] with shell and tube heat exchangers whaca widely
used in industry [7]. Optimum design of a shell ande heat
exchanger has been studied in many works [8], T9ie
geometry of shell and tube heat exchangers for miaimg
their cost has been optimized by several methd@sdenetic
algorithm (GA) [10]-[13]. However, the optimizationethods
are mainly carried out for single phase flow heathangers
and optimum design of them with presence of phasage,
like their application in refrigeration systems ameht pumps
has received less attention. The design and ogtiniz of a
shell and tube heat exchanger with phase charge,shell
and tube condenser has been investigated in somkes {d ],
[14]. [15].

B. Jabbari is MSc Student with the School of ChamiEngineering,
College of Engineering, University of Tehran, Irane-mail:
b.jabbari@ut.ac.ir).

N. Tahouni is Assistant Professor with the Schodl Ghemical
Engineering, College of Engineering, UniversityTaghran, Iran (phone: 98-
21-66957788; fax: 98-21-66957784; e-mail: ntahurti@uir).

M. H. Panjeshahi is Professor with the School oé@ital Engineering,
College of Engineering, University of Tehran, li@amail: mhpanj@ut.ac.ir).

International Scholarly and Scientific Research & Innovation 6(5) 2012

923

pulp and paper mill is considered for efficiencypimvement.
The black liquor (BL) coming from the washing seantihas
about 6.8% solids content. To prepare the liquabedburnt,
its solid content is increased to 53% in a fivesefffalling
film evaporator. Table | shows the stream datahef BL
concentration section. Using pinch technology todlse
minimum heating and cooling requirements for
concentration section is obtained as 15.2 and MW,
respectively.

the

TABLE |
STREAM DATA FOR CONCENTRATION SECTION
Tin (°C)  Tout (°C) Q (MW)
effectl BL 93.5 99.7 0.24
BLev 99.7 99.7 15
effect2 BL 86 93.5 0.5
BLev 93.5 93.5 145
Heating
demand effect3 BL 69.1 86 1.4
BLev 86 86 13
effectd BL 45.8 69.1 2.4
BLev 69.1 69.1 10.6
effects BLev 45.8 45.8 10.6
vapl to effect2 99.6 99.6 15
Cooling vap2 to effect3 93.5 93.5 145
demand vap3 to effect4 86 86 13
vap4 to effects 69.1 69.1 10.6
vap5 to condenser 45.8 45.8 17.3
Cold fresh water 31 44.8 17.2
utility
Hot fresh steam 188.0 188.0 15.2
utility

BL= Black Liquor, ev: evaporation
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B.AHP— Scheme Proposal

In our previous work a single effect water-lithilsromide
AHP was designed to upgrade low temperature hedhen
concentration section [18]. A schematic diagranthef AHP
with its five heat exchangers is given in Fig.tlcdnsists of a
generator, a condenser, an evaporator, an absarixtra
solution heat exchanger (SHX).

Moreover, there is a steam turbine in the mill wvahic
produces power and delivers steam at a lower predhat it
can be used to drive the generator of an AHP. Tiletosteam
of the steam turbine supplies the heat of gener@@&. A
low-temperature process stream supplies the hegt aiu
evaporator and the useful heat is released viaeswmat, QC,
and the absorber, QA, in which QC+QA is more th&h Q

Heat Input
Heat Qutput (e.g., Waste Heat)
Condenser Generator

SHX

Expansion Solution
Valve Pump Expansion
Valve
Evaporator Absorber
Heat Input Heat Output
{Cooling/Refrigeration)
Fig. 1 Absorption heat pump
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Fig. 2 Integration of a proposed AHP with the Blncentration
section

The Grand Composite Curve can be used in this weork
select a hot stream below the pinch point to sugipdyenergy
demand of the evaporator and a cold stream abavittth
point to receive the heat duties released fromctiradenser
and absorber, as it can be seen in Fig. 2. Aftentification
the source and sink, the phase equilibrium diagsamsed to
determine the temperature of evaporator, condeabsqrber
and generator of AHP [1]. Therefore, by applying thHP,

From the simulation of the AHP by Aspen plus sofevi
was found that 17.6 ton/hr of Medium Pressure st€if)
discharging from steam turbine is used to supptygénerator
load, QG (9.2 MW). The total amount of useful h€aC+QA
is 15.2 MW and evaporator duty, QE is 5.9MW. The
simulation of the AHP with Aspen Plus software li®wn in
Fig. 3.

<[]

Fig. 3 Simulation of the proposed AHP

As it described the AHP is considered to supply 1dW

of heating demand of concentration section, fromms it
condenser and absorber and also reducing coolinguaie of
this section by its evaporator. Our purpose isfbnaize the
AHP heat exchangers design, with regard to itsigaretion

as well as producing 15.2 MW heating energy andMB»®
cooling energy at desired temperatures. Some unknow
temperatures and duties are obtained again frormization.

All heat exchangers are considered to be shelltabe heat
exchangers.

I1l.  OBJECTIVEFUNCTION

There is a trade-off between required heat trarsifieiace
area and pressure drop of streams in design ofexehtingers
involved in AHP. Therefore, the following cost coomgnts
should be considered in heat exchanger optimizakat, the
annualized capital cost of the heat exchanger, rReamapital
cost and operating cost of pumps (for liquid streaand the
capital cost and operating cost of compressors (fas
streams).

The total cost as the objective function includesstment
cost (IC) and operating cost (OC) [19]:

_ _ ii+1)"
TAC=IC*AF +0C, AF = = 1)

Where AF,i andn are annual factor, annual interest rate and

the net heating and cooling demand in the condémtra ... exchanger lifetime, respectively.

section is reduced.
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The investment cost includes the capital cost ofthe The overall heat transfer coefficient can be exgrddy the
exchangers@x) and required pump£g,mg9 and compressors general equation:

(Ccomp, Which are calculated as follows [20]:

Cyx = a, + a,A% (2)
Coump = by + bz (S-AP)"s 3)(
CCamp =G + &) (%AP)C3 (4)

Wherea;, b;, ¢; are relative constantd, AP, m°, p are heat
exchange surface area, pressure drop of streanss fioav
rate and density of streams, respectively.

The operating cost is related to power consumptgn
pump and compressor to drive fluids for shell sig and
tube side k,) [21]:

(Es+Et)xopXxec
1000

0cC = ®)

Whereop is the annual operating time aad is electricity
cost. The power is computed from below equatiorereh is
the pump or compressor efficiency:

_APM

E==" (6)
Also the power required for driving two-phase fl¢i,) is
related to two-phase pressure dropPf) and can be

computed by Equation 7 [11]:

_ APgpym’(pg+pn)
2npgph

Epp ()

d
do ln(d_(-)) do (1
i So (= -1
2ky, + d; (ht + Rt))

Where hy, and h, are heat transfer coefficients of shell and
tube sides, andk, and R, are fouling resistances for these
sides.d,, d; and k,, are tube outside diameter, tube inside
diameter and wall thermal conductivity.

The heat transfer rate can also be computed frarhth
side or cold side in following two ways:

U=(hiS+RS+ 9)

(10)
11)

Where the equation 10 is related to sensible laasfer and
the equation 11 is related to latent heat trangfieheat

exchanger sides [224, is heat capacityy, is latent heat and
T;, T, are inlet and outlet temperatures of streams.

B.Tube Side Heat Transfer Coefficient and Pressurm@Dr
in Single Phase Flow

The film heat transfer coefficient for tube side)(ban be
calculated as follows [23]:

Nu = 0.023Re°'8Pr°'33(”L)°'14 (12)

WhereNu, Re, Pr are Nusselt number, Reynolds number and
Prandtl number. Equation12 can be re-arrangedvia gi

he = 0.023(;) (%) 08 Prosi 08 (13)

pg and p, are the density of gas and liquid streamsyherek, 4, u, 1, are conductivity, dynamic viscosity, velocity

respectively.

Here, we aim to minimize the total cost of the mwgd
AHP by varying the heat exchangers geometry. Toengéry
of heat exchangers has a strong effect on the Ibvesat
transfer coefficient and pressure drops and cotisetyl on
the total cost. Therefore, first we have to define required
equations for heat transfer coefficients and presdtops as a
function of design variables.

As there are phase changes in AHP heat exchangers,

have to consider two-phase heat exchanger equaimmgell
as single phase equations in the optimization phoee

IV. HEAT TRANSFER ANDPRESSUREDROPCALCULATIONS

A.Heat Transfer Rate

The heat transfer rat@) between the shell and tube fluids

can be determined from the following basic equation

Q = UAFAT,, (8)
WhereU is the overall heat transfer coefficient akii,, is

log mean temperature difference. The correctioiofak is

used when the number of tube passes is more than 1.
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of tube fluid and wall dynamic viscosity, respeetix
The pressure drop through a single tube is giverthigy
fanning equation:

AP =2 f(%)puz (14)
| is tube length andf is friction factor given by following
equation:
f = 0.046 Re™°? (15)
The velocity of a fluid through a single tube ifuaction of
volumetric flowrate ¥) and the number of tubeN:

u=-r (16)
Nmd;
And the surface of the heat exchanger is calculayed

A = Nnd,l (17)
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C.Shell Side Heat Transfer Coefficient and PressumgpD . = (1-_x)0-9 (p_g)U-S (4901 (29)
in Single Phase Flow e P Ky

Kern's formulation is used for computing shell sideat _ o )
transfer coefficient and pressure drop. Accordingkern’s Wherex,, is Lockart-Martinelli parameter, C is a constamd a

correlation we consider the assumption that thélebafit is  * iS mass quality. By an integral over the massiguahange,
25% [24]: the mean value for heat transfer coefficient cantiained:

X

o _p AP
hy = 0.36(;) (Re)055 Pro33 (4014 (18) hey =72 [ (A -0 (D" dx (30)
‘ " The subscriptio refers to total flow with liquid phase

Whered, is tube bundle equivalent diameter. The pressuFéOpeftieS-
drop is given by: For calculating overall pressure drop, Chisholngsiaion

can also be integrated over the mass quality change

AP = 0.5f (ZC ) 5y 2 (19) . .
e — 2 2—
With: APy = AP, [2(1— )27 (14 = x—?t) .dx (31)
f =179 Re™ %1 (20) Whichh,, andAP,, can be determined directly by using single

phase equations for tube side which were desciibpdrt B.
Where D; and N, are shell diameter and number of baffles.

. E.Condensation Case
The heat transfer surface area is given by:

In this study, we assume that condensation occushéll

A= Nud.l = Nad.(N. + 1L 21 side of heat exchanger. Following the procedure

Whe?e'a mdo(Np + DLy ( )recommended by Smith we can calculate the heasfelan

' coefficient for condensing fluid in the shef() [7]:
4P? A
Dy(N, + 1) = =+, 22 2
s(Np +1) m2do " DsLp ! hsc = 1.35 kl("l;i—jngf")lﬁ 132
1
— (™ (Psy2
N= (4) (pt) (23) For pressure drop calculation Chisholm’s corretatan be
used [27]:

L, is baffle spacing, an#, is tube pitch. Flow velocity for

shell side can be calculated by: 2 =1+ (Y2 —1)(x —x?)0815 4 x137 (33)
= Ds; (24) _
(P_t)(Pf_dO)Lb Where ¢? and Y? are, respectively, the two-phase
D.Evaporation Case multiplier and Chisholm’s parameter, which are defi as
. L . . below:

In this work it is assumed that the evaporationuogdn

tube side of all heat exchangers. In the case pdnzation the @/ (@P/o2)
; ; ; 2 dz 2 _ go

following relationship can be expected to hold [25] o =@F; . Y @921 (34)

ok (25) | i i

n o Cap Again the subscriptdo and go refer to total flow with

liquid phase properties and total flow with gas sgha
h., andAP,, are heat transfer coefficient and pressure drdyoperties, respectively(dP/dz),4, and (9P/dz),, can be
for two phase flow. The exponent, n is relatechs Reynolds determined by using single phase equations forl s in
number exponent in heat transfer correlation, bj #me part C. By an integral over the mass quality charthe

Reynolds number exponent in friction factor equatin following expression for pressure drop with sheltles
condensation can be obtained:

n=- (26)
-y AP = (5D L [+ (Y2 = 1) (x = x2)°815 + x137].dx (35)

Two-phase pressure drop is obtained from the emuati

developed by Chisholm [26]; V.OPTIMIZATION PROCEDUREUSING GA
Finding a geometry leading to the lowest cost plays
APy _ 4 _|_L+L2 27) important role in optimization of AHP heat exchargeBy
APy Xee  Xig considering tube inside diameted;), tube outer diameter

) (d,), tube length lj, shell diameter) and baffle spacing
Where.p ) (Lp) and tube pitch R,) as GA variables for each heat
C= (p—‘cl,)l/2 + (p—‘cl’)l/2 (28)  exchanger, we perform the optimization to find thimimum

International Scholarly and Scientific Research & Innovation 6(5) 2012 926 1SN1:0000000091950263
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. Following criteria must batisfied

(36)

The required data are presented in tabldo VI. We

suppose that

during phase changes (condensation or

evaporation), the temperature is constant. Alse,uhknown
temperatures are reported in data tableg s T-.

TABLE Il
REQUIRED STREAM DATA OF SHX
SHX
Shell Tube
Mass(kg/s 149.€ 152.¢
P(bar) 1.2 1.2
R(Kk/nrfw) 0.00018 0.00018
Inlet
Phase L L
T(°c) T. 101.¢
p(kg/n?) 1565 1682
Cp(J/kg k) 1956 1621
1 (CP) 1 1
K(W/m k) 0.38 0.37
Outlet
Phase L L
T(°c) T, Ts
p (kg/n?) 1696 1557
Cp(J/kg k) 1600 1900
u (CP) 1 1
K(W/m k) 0.36 0.39

SHX = solution heat exchanger, P = inlet strearsguree,
R = fouling resistancéd, = temperaturgy = density, Cp = heat capacity,
u = viscositv. K = thermal conductiv

TABLE Il
REQUIRED STREAM DATA OF GENERATOR
Generator
Shell Tube

Mass(kg/s) 4.3 152.45
P(bar 12 1.2
R(k/mfw) 0.00018 0.00018
Inlet
Phase \% L
T(°c) 254.2 T4
p (kg/n?) 5.1 1557
Cp(J/kg k) 2044 1900
u (CP) 0.02 1
K(W/m k) 0.04 0.39
Outlet Two phase
Phase L L \%
T(OC) 188 Ts Ts
p (kg/n) 878 1565  0.57
Cp(J/kg k) 4453 1956 1944
u (CP) 0.1 1 0.02
K(W/m k) 0.67 0.38  0.032
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TABLE IV
REQUIRED STREAM DATA OF CONDENSER
Condenser
Shell Tube
Mass(kg/s) 2.78 10.92
P(bar) 1.2 1
R(k/mfw) 0.00018 0.00018
Inlet Two phase
Phase \% L \%
T(°c) 104.8 99.6 99.6
p (kg/n?) 0.57 958.4 0.59
Cp(J/kg k) 1944 4217 1908
n (CP) 0.02 0.3 0.01
K(W/m k) 0.032 0.68 0.024
Outlet Two phase
Phase L L \%
T(°c) 104.¢ 99.€ 99.¢
p (kg/nT) 954.6 958.4 0.59
Cp(J/kg k) 4224 4217 1908
u(CP 0.z 0.2 0.01
K(W/m k) 0.68 0.68 0.024
TABLE V
REQUIRED STREAM DATA OF EVAPORATOR
Evaporator
Shell Tube
Mass(kg/s) 7.25 2.78
P(bar 0.1 0.07
R(k/nw) 0.00018 0.00018
Inlet
Phase \% L
T(°c) 45.8 40.2
p (kg/n?) 0.07 992.2
Cp(J/kg k) 1877 4178
n (CP) 0.01 0.6
K(W/m k) 0.02 0.63
Outlet Two phase
Phase L \% \%
T(°c) 458 458 40.2
p (kg/nT) 990  0.07 0.05
Cp(J/kg k 417¢ 1877  187E
u (CP) 0.5 0.01 0.01
K(W/m k) 0.63 0.02 0.02
TABLE VI
REQUIRED STREAM DATA OF ABSORBER
Absorber
Shell Tube
Mass(kg/s) 152.45 10.92
P(bar) 0.07 0.07
R(Kk/rPw) 0.00018 0.00018
Inlet Two phase
Phase L \% L
T(°c) Te Ts 93.5
p (kg/nt) 1699 0.04 963
Cp(J/kg k) 1601 1897 4207
n (CP) 1 0.01 0.3
K(W/m k) 0.36 0.025 0.67
Outlet Two phase
Phase L L \%
T(°c) T, 99.6 99.6
p (kg/nt) 1682 958 0.59
Cp(J/kg k) 1619 4217 1908
n (CP) 1 0.3 0.01
K(W/m k) 0.37 0.68 0.024

1SN1:0000000091950263



Open Science Index, Industrial and Manufacturing Engineering Vol:6, No:5, 2012 publications.waset.org/13841/pdf

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering
Vol:6, No:5, 2012

The number of adjustable variables is 30. An ihitia
population of Chromosomes is randomly generatede Th The authors would like to thank Ms. Shokoufe Tayyeb
her constructive help when warping up the watkthout her

population in each generation is taken as 100 aoslsover

probability and mutation probabilities are chosemé¢ 0.7 and

0.1 respectively.

presented in tablelV/

TABLE VII
OPTIMAL HEAT EXCHANGER GEOMETRIESFOUND BY GA

SHX Gen Cond Evap Abs
di(mm) 11. 10.€ 19.€ 17.2 22.°
do(mm) 14.4 14.1 23.6 20.1 27.4
Pt(mm) 21.6 21.15 354 30.15 41.1
Lb(m) 0.43: 0.77 0.497 0.967 0.99¢
Ds(m) 0.864 1.54 0.994 1.935 1.991
Nt 1256 4142 618 3222 1842
L(m) 5.897 4.62 4.32 5.80¢ 6.26¢
Area (nf) 236.97 445,19 400.71 1.73x16  2.96x18
APs (pa) 2.07x10 1.43x16 1.72x10 1.38x16  1.01x16
AP (pa) 1.49x1d 6.19x16 9x1C 591.15 1.1x1d
hs (W/nPk)  2.45x1¢  764.4: 635.8¢ 909.1 470.¢
ht(W/nfk)  3.45x10  2.48x10  6.3x1d 1.62x10  8.09x14
U (W/ k) 843.9 449.25 499.11 637.1 371.61
FAC ($/year) 383998

SHX = solution heat exchanger, Gen = GeneratordGofondenser, Evap
= Evaporator, Abs = Absorber, mm = millimeter, mneter, di = Tube
nside diameter, do = Tube outside diameter, PubeTpitch, Lb = Baffle
spacing, Ds = shell diameter, Nt = Number of tulhes,tube lengthAPs =
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The results of optimal design found by the GA are

(1

(2

(3]

[4]

(5]

(6]

(71

(8]

(9]
[10]

shell side pressure dropPt = tube side pressure drop, hs = shell side heat

ransfer coefficient, ht = tube side heat transfefficient, U = overall heat
ransfer coefficien

[11]

The unknown temperatures were found after optimumz]

design, which can be seen in table VIII:

TABLE VIII
STREAM TEMPERATURESFOUND BY GA
Temperature °C
T1=T5 184.6
T2 107.¢
T3=T4 178
T6 105.51
T7 101.9

VI. CONCLUSION

In this work, the optimum design of an absorpticeath
pump integrated with a pulp and paper industryaisied out,
by considering shell and tube heat exchangersherAHP
components. Six variables related to geometry chdaeat
exchanger are considered to get the best desidn loxtest
total annual cost by GA, regarding to the considef¢iP
configuration and desired heat duties. By compartsstween
the cost resulted by GA (383998 $/year) and theresalted

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

from general simulation by Aspen Plus software feefo

optimization (471163 $/year), the TAC is decredsgd8%.
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