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Abstract—Symbolic dynamics studies dynamical systems on the
basis of the symbol sequences obtained for a suitable partition of the
state space. This approach exploits the property that system dynamics
reduce to a shift operation in symbol space. This shift operator is a
chaotic mapping. In this article we show that in the symbol space
exist other chaotic mappings.
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I. INTRODUCTION

ADISCRETE dynamical system can be characterized as
a function f that is composed with itself over and over

again. One of the fundamental questions of dynamics concerns
about the properties of the sequence

x, f(x), f2(x), f3(x), . . . , fn(x), . . . .

That is, dynamical systems ask to somebody non-mathematical
sounding question: where do points go and what do they
do when they get there? The technique of characterizing the
orbit structure of a dynamical system via infinite sequences
of ”symbols” is known as symbolic dynamics. The first ex-
position of symbolic dynamics as an independent subject was
given by Morse and Hedlund ([17], 1938). They showed that
in many circumstances such finite description of the dynamics
is possible. Other ideas in symbolic dynamics come from the
data storage and transmission. D.Lind and B.Marcus in 1995
published first general textbook [13] on symbolic dynamics
and its applications to coding. This book, B.P.Kitchens ([12],
1998) and B.L.Hao and W.M.Zheng ([3], 1998) gives a
good account of the history of symbolic dynamics and its
applications. Symbolic dynamics were selected as a qualitative
method used to extract some quantitative qualifiers such as
entropy ([1]).

Symbolic dynamics study dynamical systems on the basis
of symbol sequences obtained for a suitable partition of the
state space. The basic idea behind symbolic dynamics is to
divide the phase space into a finite number of regions and to
label each region by an alphabetical symbol. This approach
exploits the property that system dynamics reduce to a shift
operation in symbol space. The technique requires knowing
the current symbolic state of the system and selecting future
symbols. This shift operator is chaotic mapping ([2], [3], [12],
[13], [18]). Our purpose is to show that in the symbol space
exist other chaotic mappings.

The remainder of the paper is organized as follows: it
starts with preliminaries concerning notations and terminology
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that is used in the paper followed by a definition of the
chaotic mapping. The jump mapping is considered in Section
3, furthermore, it is proved that part of this class mappings are
chaotic but the other half mappings are non-chaotic mappings.

II. PRELIMINARIES

The terminology comes from combinatorics on words (for
example, [16]). We give some notations at first:
Z — set of integers,
Z+ = {x |x ∈ Z&x > 0},
N = Z+ ∪ {0}.
With A we denote a finite alphabet, i.e., a finite non-empty
set {a0, a1, a2, ..., an}. We assume that A contains of at least
two symbols. One-sided (from left to right) infinite sequence
or word over A is any total map ω : N → A. Set Aω contains
all infinite words. If the word u = u0u1u2... ∈ Aω , where
u0, u1, u2, ... ∈ A, then finite word u0u1u2...un is called the
prefix of u of length n+ 1.

Pref(u) = {λ, u0, u0u1, u0u1u2, ..., u0u1u2...un, ...}
is the set of all prefixes of word u.

Definition 2.1. ([15]) The mapping d : Aω × Aω → R is
called a prefix metric in set Aω if

d(u, v) =

{
2−m, u �= v,
0, u = v,

where m = max{|ω| |ω ∈ Pref(u) ∩ Pref(v) }.

The term ”chaos” in reference to functions was first used
in Li and Yorke’s paper ”Period three implies chaos” ([14],
1975). We use the following definition of R. Devaney [10].
Let (X, ρ) be metric space.

Definition 2.2. ([10]) The function f : X → X is chaotic
if
a) the periodic points of f are dense in X ,
b) f is topologically transitive,
c) f exhibits sensitive dependence on initial conditions.

We note that

Definition 2.3. Let A, B ⊂ X and A ⊂ B. Then A is dense
in B if

∀x ∈ B ∀ε > 0 ∃y ∈ A ρ(x, y) < ε.

Definition 2.4. ([10]) The function f : X → X is
topologically transitive on X if

∀x, y∈X ∀ε>0 ∃z∈X ∃n∈N (ρ(x, z)<ε& ρ(fn(z), y)<ε).

Definition 2.5. ([10]) The function f : X → X exhibits
sensitive dependence on initial conditions on X if

∃δ>0 ∀x∈X ∀ε>0 ∃y∈X ∃n∈N

(ρ(x, y)<ε& ρ(fn(x), z)>δ).

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:7, 2012 

741International Scholarly and Scientific Research & Innovation 6(7) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
7,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
34

59
.p

df



Devaney’s definition is not the only classification of a chaotic
map. For example, another definition can be found in [18].
Mappings with only one property — sensitive dependence on
initial conditions — also are considered as chaotic ([11]).
In [4] is shown that for continuous functions the defining
characteristics of chaos requires less conditions than in general
case.

Theorem 2.1. ([4]) Let A be an infinite subset of metric
space X and f : A → A to be continuous. If f is topologically
transitive on A and the set of periodic points of f is dense in
A, then f is chaotic on A.

A well known chaotic mapping in symbol space Aω is a
shift mapping ([10], [12], [13], [18]). However in symbol
space exists other chaotic mappings. The basic change is to
consider the process (physical or social phenomenon) not only
at a set of times which are equally spaced, for example,
at unit time apart (a shift mapping), but at a set of times
which are not equally spaced, for example, if we cannot
fixed unit time. There is a philosophy of modelling in which
we study idealized systems that have properties that can be
closely approximated by physical systems (by Bai-Lin Hao
[2]: Symbolic dynamics may be understood as a kind of
coarse-grained description of the time evolution of a dynamical
system.).

III. JUMP MAPPINGS

The notion of increasing mapping had been introduced in
[5]. Let

fω(x) = xf(0)xf(1)xf(2) . . . xf(i) . . . , i ∈ N, x ∈ Aω.

In this case the function f is called the generator function of
mapping fω .

Definition 3.1. A function f : N → N is called positively
increasing function if

0 < f(0) and ∀i ∀j ( i < j ⇒ f(i) < f(j) ).
Mapping fω : Aω → Aω is called an increasing mapping if

its generator function f : N → N is positively increasing.
The function f(x) = 5x, x ∈ N, is increasing function in

ordinary sense. Since 0 = f(0) it is not positively increasing
function. If we consider f(x) = 5x+2 as a generator function,
then the corresponding generated mapping is increasing, it is
fω : Aω → Aω , where

∀s = s0s1s2... ∈ Aω : fω(s) = s2s7s12...s5i+2..., i ∈ N.

The well known shift map is increasing mapping in one-
sided infinite symbol space Aω , in this case the generator
function is a positively increasing function f : N → N, where
f(x) = x+ 1.

In [5] we have proved that increasing mapping fω : Aω →
Aω is chaotic in the set Aω therefore as the consequence
shift map is chaotic too. It is possible for increasing mapping
(from two symbols 0 and 1 space) to construct corresponding
mapping in unit segment that is chaotic ([7]).

In [6] and [9] we have considered another class of chaotic
mappings — class of k-switch mappings. But in [8] we have
considered combination of increasing mapping and k-switch

mapping, this class of increasing-switch mappings is chaotic
too. But if the generator function f : N → N of mapping
fω : Aω → Aω is such that f(0) = 0, then the generated
mapping fω is not chaotic in the set Aω (see [5]). Even more,
if ∃i ∈ N f(i) = i, then the generated mapping fω is not
chaotic in the set Aω .

Now we define a new class of mappings in symbol space
Aω .

Definition 3.2. Mapping fi,k : Aω → Aω is called i, k-jump
mapping if its generator function f : N → N is such that

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

x+ 1, 0 ≤ x < i− 1,
x+ 2, i− 1 ≤ x ≤ i+ k − 1,
i, x = i+ k,
x+ 1, i+ k < x,

(3.1)

where i, k ∈ N and i ≥ 1 and k > i. If i = 1, then definition
of generator function do not contain the first row.

In other words, firstly, this mapping is a shift and secondly,
i + 1th symbol xi jumps to i + k + 1 place (we remark that
the word x begins with symbol x0). For example, let x =
x0x1x2... ∈ Aω , then

f3,4(x) = x1x2x4x5x6x8x9x3x10x11x12...,

or f1,5 = x2x3x4x5x6x7x1x8x9... .

Unlike previous mapping classes (increasing mappings and k-
switch mappings) in this case we can observe two different
behaviours of i, k-jump mapping orbits. For example, we
consider mappings f2,2 and f2,3. Let x = x0x1x2x3.... In
the table below is shown first four iterations of f2,2(x):

xi xi+k

0 x0 x1 x2 x3 x4 x5 x6 x7 ...
1 x1 x3 x4 x5 x2 x6 x7 x8 ...
2 x3 x5 x2 x6 x4 x7 x8 x9 ...
3 x5 x6 x4 x7 x2 x8 x9 x10 ...
4 x6 x7 x2 x8 x4 x9 x10 x11 ...

In the next table is shown first nine iterations of f2,3(x):
xi xi+k

0 x0 x1 x2 x3 x4 x5 x6 x7 ...
1 x1 x3 x4 x5 x6 x2 x7 x8 ...
2 x3 x5 x6 x2 x7 x4 x8 x9 ...
3 x5 x2 x7 x4 x8 x6 x9 x10 ...
4 x2 x4 x8 x6 x9 x7 x10 x11 ...
5 x4 x6 x9 x7 x10 x8 x11 x12 ...
6 x6 x7 x10 x8 x11 x9 x12 x13 ...
7 x7 x8 x11 x9 x12 x10 x13 x14 ...
8 x8 x9 x12 x10 x13 x11 x14 x15 ...
9 x9 x10 x13 x11 x14 x12 x15 x16 ...

If we allow that k is negative integer, for example, f7,−5(x):
xi+k xi

0 x0 x1 x2 x3 x4 x5 x6 x7 ...
1 x1 x2 x7 x3 x4 x5 x6 x8 ...
2 x2 x7 x8 x3 x4 x5 x6 x9 ...
3 x7 x8 x9 x3 x4 x5 x6 x10 ...

If ∃i ∈ N f(i) = i, then the generated mapping fω is not
chaotic in the set Aω (see [5]) therefore the last mapping f7,−5

is not chaotic. In the orbit of f2,3 all symbols ”travel” and
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disappear with iterations of f2,3. But in the orbit of mapping
f2,2 symbols x2 and x4 change places and do not exist an iter-
ation in which these symbols disappear from the orbit. Similar
behaviour is for every i, k-jump mapping if k is even number
— this observation follows from second row of definition of
generator function, i.e. the set {xi, xi+2, ..., xi+k} is set of
symbols that disappear from the orbit of fi,k if k is even
number.

Theorem 3.1. If k is an even number, then the i, k-jump
mapping fi,k : Aω → Aω is not topologically transitive in the
set Aω .

Proof: We will prove the opposite of topological transi-
tivity:

∃x ∃y ∃ε>0 ∀z ∀n∈N (d(x, z)≥ε ∨ d(fn
i,k(z), y)≥ε).

Since the alphabet A contains at least two symbols we assume
that x = x0x1x2... ∈ Aω and y = y0y1y2... ∈ Aω are chosen
so that

xi = xi+2 = xi+4 = ... = xi+k and yi+k �= xi.

We chose ε = 2−(i+k).
Let z ∈ Aω be an arbitrary word. Note that:

if ∃m < i+k : zm �= xm, then d(z, x) ≥ 2−m > 2−(i+k) = ε.

Two cases are possible:
1) zj = xj , j = 0, 1, 2, ..., i + k − 1 and zi+k �= xi+k, then
by definition of prefix metric d(z, x) = 2−(i+k) ≥ ε.
2) if zj = xj , j = 0, 1, 2, ..., i + k, then we cannot state that
d(z, x) ≥ ε. But in this case we have zi = zi+2 = ... = zi+k

and

∀n ∈ N fn
i,k(z) = zfn(0)zfn(1)...zfn(i+k)...

where zfn(i+k) = zi+k = xi �= yi+k

therefore
d(fn

i,k(z), y) ≥ 2−(i+k) = ε.

We conclude that if k is even number then i, k-jump
mapping is not chaotic. But for an arbitrary k this mapping is
continuous.

Theorem 3.2. The i, k-jump mapping fi,k : Aω → Aω is
continuous in set Aω .

Proof: We fix word u ∈ Aω and ε > 0. We need to prove

∃δ > 0 ∀v ∈ Aω (d(u, v) < δ ⇒ d(fi,k(u), fi,k(v)) < ε).

We choose m such that 2−m < ε and assume that 0 < δ ≤
2−(m+2). If d(u, v) < δ, then by definition of prefix metric
follows that uj = vj , j = 0, 1, ...,m,m + 1. From definition
of i, k-jump mapping

fi,k(u) = u1u2...ui−1ui+1ui+2...ui+kui+k+1uiui+k+2...,
fi,k(v) = v1v2...vi−1vi+1vi+2...vi+kvi+k+1vivi+k+2... .

Independently of the choice of i and k in the both se-
quences fi,k(u) and fi,k(v) m symbols are equal therefore
d(fi,k(u), fi,k(v)) ≤ 2−m < ε.

The authors of [4] have demonstrated that for continuous
functions, the defining characteristics of chaos are topological
transitivity and density of the set of periodic points (Theorem

2.1). If k is an odd number we show that these two properties
possess to i, k-jump mapping.

Theorem 3.3. If k is odd, then the i, k-jump mapping fi,k :
Aω → Aω is topologically transitive in set Aω .

Proof: We fix words u, v ∈ Aω and ε > 0. We need to
prove that

∃z ∈ Aω ∃n ∈ N (d(z, u) < ε & d(fn
i,k(z), v) < ε).

We choose m such that 2−m < ε. Then there exists a word
z ∈ Aω such that uj = zj , j = 0, 1, ...,m − 1, and therefore
d(z, u) ≤ 2−m < ε. What should be other symbols of word
z, it depends on i, k and m.

(1) If 2m ≤ i, then we choose n = m. If 2m ≤ i, then
after m iterations of z first m symbols z0, z1, z2,..., zm−1 will
be lost from word z and another symbols zm, zm+1,...,z2m−1

(without changes) will come in the first m places. If we define
zm = v0, zm+1 = v1, ..., z2m−1 = vm−1, then d(fn

i,k(z), v) ≤
2−m < ε. Hence in this case

z = u0u1u2...um−1v0v1v2...vm−1z2mz2m+1...,

where z2m+j ∈ Aω , j = 0, 1, ..., are freely chosen.
(2) If m ≤ i, then by m iterations of z first m symbols

z0 = u0, z1 = u1, z2 = u2,..., zm−1 = um−1 will be lost
from word z and another symbols zj , j ≥ m will come in
the first m places - these symbols must be equal with v0, v1,
v2,..., vm−1. Clearly, this can be done since sequence fm

i,k(z)
in each place have symbols with different indices.

For example, if m = 3, i = 4, k = 3, then n = m = 3 and
first iterations are as follows:

zi zi+k

0 z0 z1 z2 z3 z4 z5 z6 z7 z8 ...
1 z1 z2 z3 z5 z6 z7 z8 z4 z9 ...
2 z2 z3 z5 z7 z8 z4 z9 z6 z10 ...
3 z3 z5 z7 z4 z9 z6 z10 z8 z11 ...

We define z3 = v0, z5 = v1, z7 = v2, then

z = u0u1u2v0z4v1z6v2z8z9...,

where z4, z6, z8, z9,...∈ Aω are chosen freely, and z is the
searched word.

(3) If m > i, then by m iterations of z not all of z0 = u0,
z1 = u1,..., zm−1 = um−1 will be lost from sequence fm

i,k(z).
In this case n is a number of iteration such that all first m
symbols of word z are lost from sequence fm

i,k(z). Since all
symbols are lost from word z with iterations of fi,k then exist
such n. But first m symbols of fn

i,k(z) must be equal with v0,
v1,..., vm−1.

For example, if i = 3, k = 3, m = 5, then:
zi zi+k

0 u0 u1 u2 u3 u4 z5 z6 z7 z8 ...
1 u1 u2 u4 z5 z6 z7 u3 z8 z9 ...
2 u2 u4 z6 z7 u3 z8 z5 z9 z10 ...
3 u4 z6 u3 z8 z5 z9 z7 z10 z11 ...
4 z6 u3 z5 z9 z7 z10 z8 z11 z12 ...
5 u3 z5 z7 z10 z8 z11 z9 z12 z13 ...
6 z5 z7 z8 z11 z9 z12 z10 z13 z14 ...

In this case n = 6 and

z = u0u1u2u3u4v0z6v1v2v4z10v3z12z13...,
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where z6, z10, z12, z13, ... ∈ Aω are chosen freely, and z is
searched word.

Theorem 3.4. If k is odd, then the set of periodic points of
i, k-jump mapping fi,k : Aω → Aω is dense set in set Aω .

Proof: Let ε > 0. There exists m such that 2−m < ε.
Assume that u ∈ Aω and u0u1...um−1 is a prefix of word
u of length m. We prove that there exists a word x ∈ Aω

with the same prefix (i.e., d(u, x) ≤ 2−m < ε) and this x is a
periodic point for i, k-jump mapping with period m or greater
than m.

Let x = u0u1...um−1xmxm+1xm+2... ∈ Aω .
It is possible two cases:

(1) If m ≤ i, then by m iterations of x the first m symbols
u0, u1, u2,..., um−1 will be lost from word x. By definition of
periodicity we need fm

i,k(x) = x. Clearly, this is possible since
in each place of sequence fm

i,k(x) are symbols with different
indices. For, examples, m = 3, i = 5, k = 3. We consider the
first m = 3 iterations of x by f5,3:

x5 x8

0 u0 u1 u2 x3 x4 x5 x6 x7 x8 ...
1 u1 u2 x3 x4 x6 x7 x8 x9 x5 ...
2 u2 x3 x4 x6 x8 x9 x5 x10 x7 ...
3 x3 x4 x6 x8 x5 x10 x7 x11 x9 ...

x is periodic point with period m = 3 if

u0 = x3 = x8 = x9 = x12 = ... = x3j = ...
u1 = x4 = x5 = x10 = x13 = ... = x3j+1 = ...
u2 = x6 = x7 = x11 = x14 = ... = x3j+2 = ...
j = 3, 4, 5, ...

Therefore

x = u0u1u2 u0u1u1 u2u2u0 u0u1u2 u0u1u2 ...

is periodic point with period 3 and it is the searched word.
(2) If m > i, then it is possible to find smallest n such that

fn
i,k(x) do not contain prefix symbols u0u1u2...um−1 and we

can find word x with period n (n ≥ m) similar by as above.
For example, m = 4, i = 2, k = 3. We consider first iterations
of x by f2,5 while prefix symbols are lost:

x2 x5

0 u0 u1 u2 u3 x4 x5 x6 x7 ...
1 u1 u3 x4 x5 x6 u2 x7 x8 ...
2 u3 x5 x6 u2 x7 x4 x8 x9 ...
3 x5 u2 x7 x4 x8 x6 x9 x10 ...
4 u2 x4 x8 x6 x9 x7 x10 x11 ...
5 x4 x6 x9 x7 x10 x8 x11 x12 ...

From this follows that n = 5. Word x is periodic point with
period n = 5 if

u0 = x4 = x10 = x15 = ... = x5j = ...
u1 = x6 = x11 = x16 = ... = x5j+1 = ...
u2 = x9 = x14 = x19 = ... = x5j+4 = ...
u3 = x7 = x12 = x17 = ... = x5j+2 = ...
x5 = x8 = x13 = x18 = ... = x5j+3 = ...
j = 2, 3, 4, 5, ...; x5 ∈ Aω is chosen freely.

Therefore

x = u0u1u2u3u0 x5u1u3x5u2 u0u1u3x5u2 u0u1u3x5u2 ...

is periodic point with period 5 and it is the searched word.
We note that in this case we can find more than one periodic
point with desired properties.

Now we can assert by Theorem 2.1:
Theorem 3.5. If k is odd, then the i, k-jump mapping fi,k :

Aω → Aω is chaotic in the set Aω .

IV. CONCLUSION

Let
x(t0), x(t1), ..., x(tn), ...

be the flow of discrete signals. Suppose that we have experi-
mentally observed the subsequence

x(T0), x(T1), ..., x(Tn), ...

If
T0 = t1, T1 = t2, ... Tn = tn+1, ...,

then we have a shift map. If, for example,

T0 = t1, T1 = t3, T2 = t4, T3 = t2, T4 = t5 ... Tn = tn+1, ...,

then we have jump mapping f2,1. Notice if we have the infinite
word

x = x0x1x2...xn...

instead of flow of discrete signals, then we have respectively
the infinite word

y = y0y1y2...yn...

instead of the experimentally observed subsequence. If for all
indices t

yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1, t = 0,
x3, t = 1,
x4, t = 2,
x2, t = 3,
xt+1, t ≥ 4,

then we obtain a generator map of jump mapping f2,1

f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, t = 0,
3, t = 1,
4, t = 2,
2, t = 3,
t+ 1, t ≥ 4,

and
y = f2,1(x) = xf(0)xf(1)xf(2)...xf(n)....

We do not claim that the function f(t) is chaotic on the real
space R but we have proved that this function as a generator
creates a chaotic map f2,1 in the symbol space Aω . We have
proved something more: if k is odd, then every generator
function (3.1) creates a chaotic map fi,k in the symbol space
Aω . But models with chaotic mappings are not predictable in
long-term.
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