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Abstract— This paper presents the performance analysis of
space-time trellis codes in orthogonal frequency division mul-
tiplexing systems (STTC-OFDMs) over quasi-static frequency
selective fading channels. In particular, the effect of channel delay
distributions on the code performance is discussed. For a STTC-
OFDM over multiple-tap channels, two extreme conditions that
produce the largest minimum determinant are highlighted. The
analysis also proves that the corresponding coding gain increases
with the maximum tap delay. The performance of STTC-OFDM,
under various channel conditions, is evaluated by simulation. It
is shown that the simulation results agree with the performance
analysis.
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I. INTRODUCTION

Space-time trellis coding (STTC) technique has been pro-
posed to achieve both the diversity and coding gains in multi-
input multi-output (MIMO) fading channels [1]. The orthog-
onal frequency division multiplexing (OFDM) technique is
currently widely used to combat intersymbol interference (ISI)
by transforming a frequency selective fading channel into a set
of parallel correlated flat fading channels. Recently, various
STTCs in OFDM systems, referred to as STTC-OFDMs, in
frequency selective fading channels have been investigated
[2][3][4][5].

The diversity gain of STTC-OFDM systems is investigated
in [3] and [4]. It was pointed out in [4] that the performance
of space-time coded OFDM systems depends on the channel
delay profile. To reduce this dependence and simplify the code
design, ideal interleaving was usually used to scramble the
coded symbols.

In contrast to the analysis in [4] with ideal interleaving,
the worst case, where no interleaving is employed in the
transmitter, was considered in [5], as the optimization for the
worst case can provide a robust system design [6]. For STTC-
OFDMs in quasi-static frequency selective fading channels, the
maximum possible diversity gain is the product of the number
of transmit antennas nT , the number of receive antennas
nR and the number of the channel taps L [3]. Since the
low memory order STTCs in OFDM systems cannot achieve
the maximum possible diversity gain [3], the performance of
STTC-OFDM is analyzed in terms of the coding gain [5].
However this analysis only applies to the STTCs with the
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minimum error event length pmin of 2. This results in a
restriction since some STTCs, especially high memory order
codes, have the minimum error event length pmin greater than
2 [6].

In this paper, we will address this issue. We extend the
analysis in [5] to the general case, in which STTCs have the
minimum error event length pmin no less than 2. Then the
effect of the channel delay distribution on the coding gain
is discussed. The code performance of STTC-OFDM over
quasi-static frequency selective fading channels is evaluated
by simulations. It is shown that the simulation results agree
with the performance analysis.

This paper is organized as follows. Section II introduces the
system model. Section III presents the pairwise error proba-
bility (PWEP) of the STTC-OFDMs in quasi-static frequency
selective fading channels. In Section IV, the code performance
of STTC-OFDM based on the diversity and coding gains has
been investigated. In particular, the effect of various channel
delay distributions on the code performance is discussed in
terms of the coding gain. Section V presents the simulation
results. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider an OFDM system with nT transmit antennas,
nR receive antennas and K subcarriers in a quasi-static fre-
quency selective fading channel. Each OFDM frame consists
of nT K M -PSK STTC symbols, where the encoded symbol
xi(k), i ∈ {1, 2, ..., nT }, k ∈ {1, 2, ...,K}, is transmitted
on the k-th subcarrier from the i-th transmit antenna. After
matched filtering, sampling and fast Fourier transform (FFT),
the received signal at the j-th receive antenna and on the k-th
subcarrier is given by

rj(k) =
nT∑
i=1

Hij(k)xi(k) + nj(k), (1)

where Hij(k), j ∈ {1, 2, ..., nR}, denotes the channel fre-
quency response from the transmit antenna i to receive antenna
j and subcarrier k, nj(k) is the noise component at receive
antenna j through subcarrier k, which is an independent com-
plex Gaussian random variable with zero-mean and variance
N0/2 per dimension.

The quasi-static fading channel in this paper is assumed to
be static during one OFDM frame but varies from one frame
to another. The fading channels between different transmit and
receive antennas are assumed to be uncorrelated. Assuming the
fading channel has L non-zero taps, the time-domain channel
impulse response can be modeled by an L tap-delay line [7].

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:2, No:1, 2008 

176International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
1,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
30

38
.p

df



The channel impulse response from the i-th transmit antenna
to the j-th receive antenna is expressed as [3]

hij(τ, t) =
L−1∑
l=0

h̃ij(l, t)δ
(

τ − nl

K∆f

)
, (2)

where δ(·) denotes the Dirac delta function, h̃ij(l, t) denotes
the complex amplitude of the l-th non-zero tap with the delay
of tl. The h̃ij(l, t)s are modeled by the wide-sense stationary
(WSS) and narrowband complex Gaussian processes, which
are independent for different paths with E[|h̃ij(l, t)|2] = σ2

l .
We normalize the channel power such that we have

∑
l σ

2
l =

1.
In (2), nl is the normalized time delay for the l-th tap

and it is given by nl = tlK�f = tl/Ts, where l ∈
{0, 1, ...,L−1}, �f is the subcarrier separation, and Ts is the
sampling interval of the OFDM systems. We call the delays
[t0, t1, ..., tl, ..., tL−1] of the L non-zero taps the channel delay
distribution. Let tl2 and tl1 denote the delays of the l2-th and
l1-th taps, respectively, where l1, l2 ∈ {0, 1, ..., L−1}, l2 > l1
and tl2 > tl1 . The interval tl2 − tl1 is assumed to be not less
than the sampling interval Ts.

Since the performance analysis is done within one OFDM
frame, the time index t in (2) is omitted hereafter. A cyclic
prefix (CP) with the length of Tcp, where Tcp > tL−1, is
appended to each OFDM frame to avoid the ISI. With proper
cyclic extension and tolerable leakage, the channel frequency
response between the i-th transmit antenna and the j-th receive
antenna is given by [3]

Hij(k) =
L−1∑
l=0

h̃ij(l)e−j2πknl/K (3)

= h∗
ijw(k), (4)

where hij =
[
h̃ij(0), h̃ij(1), · · · , h̃ij(L − 1)

]∗
is the

channel vector, w(k) = [e−j2πkn0/K , e−j2πkn1/K , ...,
e−j2πknL−1/K ]T is the FFT coefficient vector, ∗ and T denote
the Hermitian and transpose operation, respectively. Note that
the delay of the first channel tap is t0 = 0. Thus, the FFT
coefficients can be rewritten as

w(k) = [1, e−j2πkt1�f , e−j2πkt2�f , ..., e−j2πktL−1�f ]T .
(5)

III. PAIRWISE ERROR PROBABILITY (PWEP) OF
STTC-OFDM

Assuming that the perfect channel state information
(CSI) is known to the receiver, a codeword
x = (x(1), ...,x(k), ...,x(K )), where x(k) =
(x1(k), x2(k), ..., xnT

(k)), k ∈ {1, 2, ...,K}, is transmitted
and erroneously decoded as x̂ = (x̂(1), ..., x̂(k), ..., x̂(K )),
where x̂(k) = (x̂1(k), x̂2(k), ..., x̂nT

(k)). The pairwise
error probability (PWEP) of deciding erroneously using the
maximum likelihood decoder (MLD), conditioned on Hij =
[Hij(1) , Hij(2) , ... , Hij(K)] , i ∈ {1, 2, ..., nT }, j ∈ {1,

2, ..., nR}, is upper bounded by [6]

Pr(x → x̂ | Hij) ≤ exp

⎛
⎝− Es

4N0

⎛
⎝ nR∑

j=1

h∗
jD(x, x̂)hj

⎞
⎠
⎞
⎠ ,

(6)
where

h∗
j = [h∗

1j ,h
∗
2j , ...,h

∗
nT j ]

∗
1×LnT

,

D(x, x̂) =
K∑

k=1

W(k)∆(k)∆∗(k)W∗(k), (7)

∆(k) =

⎡
⎢⎢⎢⎣

x1(k) − x̂1(k),
x2(k) − x̂2(k),

...
xnT

(k) − x̂nT
(k),

⎤
⎥⎥⎥⎦

nT ×1

,

W(k) =

⎡
⎢⎢⎢⎣

w(k) 0 · · · 0
0 w(k) · · · 0
...

...
. . .

...
0 0 · · · w(k)

⎤
⎥⎥⎥⎦

LnT ×nT

,

and Es is the energy per symbol at each transmit antenna.
Averaging the conditioned PWEP in (6) with respect to the

Rayleigh fading coefficients, the upper bound of the averaged
PWEP is given by [3]

Pr(x → x̂) ≤
(

ξ∏
n=1

(
1 + λn

Es

4N0

))−nR

(8)

=
(
det
(
D̃α(x, x̂)

))−nR

α−ξnR ,

where ξ is the rank of matrix D(x, x̂), λn, n ∈ {1, 2, ...,
ξ}, are the non-zero eigenvalues of the matrix D(x, x̂),
α = Es/4N0, D̃α(x, x̂) = 1

αI + D(x, x̂), I is the identity
matrix, and det (A) denotes the determinant of the matrix
A. As discussed in [1], we call the minimum value of(
det
(
D̃α(x, x̂)

))1/ξ

the coding gain and the minimum value
of ξnR the diversity gain of the system.

In (7), ∆(k)∆∗(k) is a rank-one matrix [6]. If the symbols
of the codewords x and x̂ corresponding to the k-th subcarrier
in the given OFDM frame are the same, e.g. x(k) = x̂(k),
∆(k)∆∗(k) is an all zero matrix. Otherwise, we obtain
∆(k)∆∗(k) �= 0.

Let p denote the length of the pairwise error event path,
which is the number of the time instances in the code trellis
such that ∆(k)∆∗(k) �= 0. The minimum value of p over
all possible codeword pairs is denoted by pmin. Note that ξ =
rank(D(x, x̂)). We thus obtain minx,x̂ ξ ≤ min(pmin, nT L)
[6]. To achieve the maximum possible diversity gain nRnT L,
it requires that pmin ≥ nT L. This relation states that increas-
ing the number of channel taps L results in a larger diversity
gain. Otherwise, if pmin ≤ nT L, the maximum possible diver-
sity gain nRnT L cannot be obtained [3]. As a consequence, to
minimize the error probability, the coding gain, or equivalently,

the minimum determinant
(
det
(
D̃α(x, x̂)

))1/ξ

needs to be
maximized over all codeword pairs.

Considering (7), it is obvious that both the matrix D(x, x̂)
and its individual matrices W(k)∆(k)∆∗(k)W∗(k), where

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:2, No:1, 2008 

177International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
1,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
30

38
.p

df



k ∈ {1, 2, ..., K}, are non-negative symmetric Hermitian.
According to Minkowski inequality [8], the determinant of
the matrix D̃α(x, x̂) has the following property:

det
(
D̃α(x,x̂)

)
= det

(
1
α
I + D(x,x̂)

)

= det

(
1
α
I +

K∑
k=1

W(k)∆(k)∆∗(k)W∗(k)

)

≥ det

(
1
α
I +

K−1∑
k=1

W(k)∆(k)∆∗(k)W∗(k)

)

≥ ... ≥ det

(
1
α
I +

pmin∑
k=1

W(k)∆(k)∆∗(k)W∗(k)

)
. (9)

Let det
(
D̃α(x, x̂)

)
|pmin denote the minimum determinant

of the matrix D̃α(x, x̂) with the minimum length of the
pairwise error event paths, pmin. Therefore, to maximize the
coding gain, the value of det

(
D̃α(x, x̂)

)
|pmin needs to be

maximized.

IV. THE EFFECT OF CHANNEL DELAY DISTRIBUTION ON
THE CODE PERFORMANCE

In order to investigate the effect of the channel delay
distributions on the code performance, we assume that the
powers of the multi-paths are fixed while their relative delays
are variable.

Consider the determinant det
(
D̃α(x, x̂)

)
|pmin with nT ≥

2 and L ≥ 2 in (10) [8], where tl2 − tl1 is the time interval
between the l1-th and l2-th taps, tl2 > tl1 , l2 > l1, i1, i2 ∈
{1, ..., nT }, k1, k2 ∈ {1, ..., pmin}, and k2 > k1. In (10),
the coefficients β, η and γk1,k2 are positive real values, which
are determined by the STTC only. Note that the determinant
consists of two parts, PART I and PART II, where PART I
is a positive constant for a given STTC and only PART II is
related to the channel delays. In order to evaluate the effect
of channel delay distribution on the performance of the given
STTC-OFDM, we focus on PART II.

In PART II, defining 
 = π (k2-k1)∆f , we have

sin2(π (k2-k1)∆f (tl2-tl1)) = sin2 (
 (tl2-tl1)) . (11)

Note that the maximum delay of the channel is tL−1, where
tL−1 < Tcp. Considering that tl2 − tl1 ≤ tL−1 and k2 − k1 ≤
pmin − 1, we have


 (tl2 − tl1) ≤ π(pmin − 1)∆f tL−1, (12)

with pmin = �v/2	+1 for STTCs with the memory order v [6,
p. 122], where �v/2	 denotes the maximum integer not greater
than v/2. The maximum delay for indoor communications
environment, such as Wireless LAN, is less than 500 ns
[9][10]. For most wireless OFDM systems and all the STTCs
designed in the literature [1][6][11], we have † 1

1For Wireless LAN and Hiperlan OFDM systems [12][13], the value of
�

(
tl2 -tl1

)
is in the range of (0, 0.45π]. For wireless OFDM systems in the

research literature, such as [2][4][6], the value of �
(
tl2 -tl1

)
is in the range

of (0, 0.46π].


 (tl2-tl1) ∈ (0, π/2). (13)

It is obvious that the value of sin2(
(tl2 − tl1)) increases
monotonically with 
(tl2 − tl1) in the range of (0, π/2). Now
we can rewrite PART II as

PART II =
pmin−1∑

k2−k1=1

γk1,k2

⎛
⎝ L−1∑

l1,l2=0

sin2(
(tl2 − tl1))

⎞
⎠ .

(14)
Considering the two-tap (L = 2) channels, (14) can be

further rewritten as

PART II =
pmin−1∑

k2−k1=1

γk1,k2sin
2(
t1). (15)

Then we have the following observation.
Observation 1: Consider a given STTC-OFDM over the

two-tap channels. Note that the positive constant γk1,k2 is de-
termined by the STTC and the value of PARTII increases with

t1 in the range of (0, π/2). Hence, the minimum determinant

det
(
D̃α(x, x̂)

)
|pmin increases with the maximum tap delay

t1.
Consider the given STTC-OFDM with the positive constant

coefficients γk1,k2 over the channels with L taps, where L > 2.
To simplify the analysis, we assume that the maximum delay
of the channel tL−1 is fixed first. Then we have the following
lemma.

Lemma 1: Since the time interval tl2 − tl1 is within the
open set (0, π/2), where l2, l1 ∈ {1, ..., L − 2}, and l2 > l1,

the cost function
pmin−1∑

|k1−k2|=1

γk1,k2

(
L−1∑

l1,l2=0

sin2(
(tl2 − tl1))

)
is a non-decreasing function of time differences. The points
that the maximum value of this cost function are located at
the extreme points (This results from the application of the
extreme points [14].)

Proof: Consider the objective function

f(∆tz) =
pmin−1∑

|k1−k2|=1

γk1,k2

⎛
⎝ L−1∑

l1,l2=0

sin2(
(tl2 − tl1))

⎞
⎠ ,

where ∆tz = tl2 − tl1 , z = 1, 2, ..., Z, and Z is the total
number of all the possible time differences tl2 − tl1 . We thus
have the following non-linear programming problem:

maximizing f(∆tz),
subject to ∆tz ∈ [Ts, TL−1 − Ts], and f(∆tz) ∈ (0, 1).

Let ∆t̂z be a maximizing solution for the problem
{maxf(∆tz) : tz ∈ S}, provided that ∆t̂z ∈ S and
f(∆t̂z) ≥ f(∆tz), where S = {∆t̂z : ∆t̂z ≤ TL−1 − Ts}
is a special case of a polyhedral set [14, p. 54]. In such a
case, according to Theorem 3.4.7 [14, p. 107], we say that
a maximum solution ∆t̂z exists and ∆t̂z is an extreme point
of S. Since the time interval tl2 − tl1 is within the open set
(0, π/2) and the objective function is an non-decreasing func-
tion of time differences, theoretically, the maximum solutions
are given by ∆t1 = ... = ∆tZ = TL−1 − Ts [14, p. 55].
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det
(
D̃α(x, x̂)

)
|pmin =

1
αnT L

+
nT∑
i=1

pmin∑
k=1

β |∆i(k)|2 + ...

︸ ︷︷ ︸
PART I

+
pmin−1∑

k2−k1=1

γk1,k2

⎛
⎝ L−1∑

l1,l2=0

sin2(π (k2-k1) (tl2-tl1)∆f )

⎞
⎠

︸ ︷︷ ︸
PART II

, (10)

Power

Time of delayst1t0=0

…

a1=tL-1-(L-2)Ts

Channel Delay Distribution in (16)

Power

Time of delayst1 t2 tL-1
t0=0

b2=Tsb1=Ts

Channel Delay Distribution in (17)

t2

…
tL-3 tL-2 tL-1

aL-2=Ts aL-1=Tsa2=Ts a3=Ts

t3

bL-2=Ts

tL-2

…

…
tL-3

b3=Ts bL-1= tL-1-(L-2)Ts

Fig. 1. Two sets of extreme points for the channel delay distributions with
equal gain taps

We thus apply the above maximum solutions (extreme
points) to the STTC-OFDM systems. Apparently, under the
assumption of tl2 − tl1 ≥ Ts , t0 = 0 , and the fixed tL−1, the
only possible sets of extreme points in the STTC-OFDM are

tl = tL−1 − (L − 1 − l)Ts, l ∈ 1, 2, ..., L − 1, (16)

and

tl =
{

lTs,
tL−1,

l = 1, ..., L − 2,
l = L − 1.

}
(17)

respectively.
In other words, the extreme points give the channel

delay distribution, under which the minimum determinant
det
(
D̃α(x, x̂)

)
|pmin of the given STTC-OFDM has the

largest value, if the maximum delay tL−1 is fixed. The
channel taps with the uniform powers and the channel delay
distributions in (16) and (17) are illustrated in Fig. 1. Now,
we have the following properties.

Property 1: For a given STTC-OFDM over the channels
with the same maximum delay tL−1, the minimum determi-
nants in (10) under the channel delay distributions of (16)
and (17) should be same.

Proof: Let C and D denote the values of
L−1∑

l1,l2=0

sin2(
(tl2 − tl1)) under the channel delay distributions

of (16) and (17), respectively. As shown in Fig. 1, defining
al+1 = tl+1 − tl, under the delay distribution of (16) and
bl+1 = tl+1 − tl under the delay distribution of (17), where
l ∈ {0, 1, ..., L − 1}, we have

al =
{

tl−1 − (l − 2)Ts,
Ts,

l = 1,
l = 2, ..., L − 1.

}
(18)

and

bl =
{

tl−1 − (l − 2)Ts,
Ts,

l = L − 1,
l = 1, ..., L − 2.

}
(19)

respectively. Then, C and D are rewritten as

C =
L−1∑
l=1

sin2(
al) +
L−2∑
l=1

sin2(
(al+1 + al)) (20)

+... + sin2(
(a1 + ... + aL−1)),

and

D =
L−1∑
l=1

sin2(
bl) +
L−2∑
l=1

sin2(
(bl+1 + bl)) (21)

+... + sin2(
(b1 + ... + bL−1)),

respectively.
In (18) and (19), we can see that al and bl, where l =

1, 2, ..., L − 1, take the same set of values but in different
orders. Thus, it is clear that

L−1∑
l=1

sin2(
al) =
L−1∑
l=1

sin2(
bl),

L−2∑
l=1

sin2(
(al+1 + al)) =
L−2∑
l=1

sin2(
(bl+1 + bl)),

...
sin2(
(a1 + ... + aL−1)) = sin2(
(b1 + ... + bL−1)).

Then, we have
C = D.

In this case, for the given STTC-OFDM, the minimum deter-
minants in (10) should be same.

Property 2: For a given STTC-OFDM under the channel
delay distributions of (16) or (17), the corresponding minimum
determinant in (10) increases with the maximum delay tL−1.
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Proof: Let tL−1(1) and tL−1(2), where tL−1(1) >
tL−1(2), denote the maximum delays of two different chan-
nels, which are assumed to have the same multi-path powers
and the channel delay distributions in (17). It can be seen
that the minimum determinant of (10) depends on the value

of
L−1∑

l1,l2=0

sin2(
(tl2 − tl1)). In this case, defining A =

L−1∑
l1,l2=0

sin2(
(tl2 − tl1)) with delays of t1, t2, ..., tL−1(1), we

have

A =
L−2∑
l=0

sin2(
(tL−1(1) − tl)) +
L−3∑
l=0

sin2(
(tL−2 − tl))

+ ... +
1∑

l=0

sin2(
(t2 − tl)) + sin2(
t1).

Similarly, defining B =
L−1∑

l1,l2=0

sin2(
(tl2 − tl1)) with delays

of t1, t2, ..., tL−1(2), we have

B =
L−2∑
l=0

sin2(
(tL−1(2) − tl)) +
L−3∑
l=0

sin2(
(tL−2 − tl))

+ ... +
1∑

l=0

sin2(
(t2 − tl)) + sin2(
t1).

Then,

A−B =
L−2∑
l=0

sin2(
(tL−1(1)−tl))−
L−2∑
l=0

sin2(
(tL−1(2)−tl)).

As we have tL−1(1) > tL−1(2) and 
(tl2 − tl1) ∈ (0, π/2) ,
it is clear that

sin2(
(tL−1(1) − tl)) > sin2(
(tL−1(2) − tl)), (22)

where l ∈ {0, 1, ..., L − 2}. Hence, we have

A > B.

This means the minimum determinant det
(
D̃α(x, x̂)

)
|pmin

increases with the maximum delay tL−1 under the channel
delay distribution of (17). Similarly, according to Property 1,
we can prove that the above conclusion is true for the STTC-
OFDM under the channel delay distribution of (16).

V. SIMULATIONS

The code performance of STTC-OFDMs over frequency
selective fading channels with various channel delay distri-
butions is evaluated by simulations. In the simulations, the
OFDM system is assumed to have a bandwidth of 1 MHz
and 256 OFDM subcarriers. The subcarrier separation �f is
3.9KHz. The OFDM frame duration is 256µs and a guard
interval is 40µs. The quasi-static frequency selective fading
channels with equal gain taps but different delay distributions
are assumed. Two transmit and three receive antennas are
employed in the STTC-OFDMs.

Fig. 2 shows the minimum determinant
det
(
D̃α(x, x̂)

)
|pmin of 4 and 8-state 4-PSK STTCs

5 10 15 20 25 30 35 40
70

72

74

76

78

80

82

Delays (µs)

M
in

im
um

 D
et

er
m

in
an

t

8−state STTC OFDM

5 10 15 20 25 30 35 40
32

34

36

38

40

42

Delays (µs)

M
in

im
um

 D
et

er
m

in
an

t

4−state STTC OFDM

Fig. 2. Minimum determinant det
(
D̃α(x,x̂)

)
|pmin of 4 and 8-state 4-

PSK STTC-OFDMs in frequency selective fading channels with two equal
gain taps and various delays.

[11] in the OFDM system over the two-tap channels with
different delays t1-t0, where t1 ∈ [5, 39µs] and t0 = 0.
In this case, we have α ≈ 1 and pmin = 2. Note that

t1 ∈ [0.06, 0.48]. According to Observation 1 in SECTION
4, the minimum determinant det

(
D̃α(x, x̂)

)
|pmin increases

with the delay t1, as illustrated in Fig. 2.
The frame error rate (FER) performance of the 8 and 64-

state 4-PSK STTCs [11] in the OFDM system over the two-
tap channels with delays of t1 =5µs and t1 =39µs is shown
in Fig. 3. Note that the 8-state (pmin = 2) and 64-state
(pmin = 4) codes have 
t1 ∈ [0.06, 0.48] and 
t1 ∈ [0.18,
1.4], respectively. It is shown that the 8 and 64-state codes
in the fading channel with a delay of 39µs outperform the
corresponding codes in the channel with a delay of 5µs by
0.5 dB and 1.3 dB at the FER of 10−3, respectively, which
agrees with the previous discussion.

Fig. 3 also shows that the 64-state STTC is more sensitive
to various channel delays than the 8-state one, as the 64-state
code has a larger value of pmin and therefore a larger number
of positive additive terms γk1,k2 and (

∑
l1,l2

sin2(
t1)) in (14).

Fig. 4 shows the performance of 16-state 4-PSK STTC
[11] in the OFDM system over three-tap frequency selective
fading channels with different delay distributions. Note that
pmin = 3 for the 16-state code and the positive coefficients
γk1,k2 defined in PART II are constant for the given code.
From Fig. 4, we can see that the STTC-OFDM under both
the channel delay distributions of (t0 = 0µs, t1 = 35µs, t2 =
39µs) and (t0 = 0µs, t1 = 4µs, t2 = 39µs), corresponding
to (16) and (17), respectively, has the same performance and
outperforms the one under the channel delay distribution of
(t0 = 0µs, t1 = 20µs, t2 = 39µs) by 0.4 dB at the FER of
10−3. In addition, it is shown that the STTC-OFDM under the
channel delay distributions (17) with the maximum delay of
t2 = 39µs outperforms the one under the delay distribution
(17) with the maximum delay of t2 = 20µs by 1.1 dB at the
FER of 10−3. The simulation results are all consistent with
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Fig. 3. FER performance of 8 and 64-state 4-PSK STTC-OFDMs in
frequency selective fading channels with two equal gain taps and various
delays.
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Fig. 4. FER performance of 16-state 4-PSK STTC-OFDM in frequency
selective fading channels with three equal gain taps and various delays.

the analysis in Section 4.
Fig. 4 shows the performance of 16-state 4-PSK STTC

[11] in the OFDM system over three-tap frequency selective
fading channels with different delay distributions. Note that
pmin = 3 for the 16-state code and the positive coefficients
γk1,k2 defined in PART II are constant for the given code.
From Fig. 4, we can see that the STTC-OFDM under both
the channel delay distributions of (t0 = 0µs, t1 = 35µs, t2 =
39µs) and (t0 = 0µs, t1 = 4µs, t2 = 39µs), corresponding
to (16) and (17), respectively, has the same performance and
outperforms the one under the channel delay distribution of
(t0 = 0µs, t1 = 20µs, t2 = 39µs) by 0.4 dB at the FER of
10−3. In addition, it is shown that the STTC-OFDM under the
channel delay distributions (17) with the maximum delay of
t2 = 39µs outperforms the one under the delay distribution
(17) with the maximum delay of t2 = 20µs by 1.1 dB at the
FER of 10−3. The simulation results are all consistent with

the analysis in Section IV.

VI. CONCLUSION

In this paper, we consider the STTC-OFDM systems with
no interleavors over quasi-static frequency selective fading
channels. In order to provide a robust system design, we
presented the performance analysis of STTC-OFDMs under
various channel conditions in terms of the coding gain. In
particular, the effect of various channel delay distributions on
the code gain is investigated. Through this analysis, we point
out two extreme conditions that produce the largest minimum
determinant for a STTC-OFDM over multiple-tap channels.
The analysis also proves that the corresponding coding gain
increases with the maximum tap delay. The performance of
STTC-OFDM under various channel conditions is evaluated
by simulation. It is shown that 1) the minimum determinant
of STTC in OFDM systems increases with the maximum tap
delay of the channel; 2) the STTC-OFDM under two ex-
treme channel conditions outperforms that under other channel
conditions; and 3) the high memory order STTCs are more
sensitive to the channel delays since they have a larger value
of error event length pmin. Hence, we can see that all the
simulation results are consistent with the performance analysis.
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